-
原理图
-
代码
python
import torch
import torch.nn as nn
class Multi_Head_Self_Attention(nn.Module):
def __init__(self, embed_size, heads):
super(Multi_Head_Self_Attention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)
self.keys = nn.Linear(self.embed_size, self.embed_size, bias=False)
self.values = nn.Linear(self.embed_size, self.embed_size, bias=False)
self.fc_out = nn.Linear(self.embed_size, self.embed_size, bias=False)
def forward(self,queries, keys, values, mask):
N = queries.shape[0] # batch_size
query_len = queries.shape[1] # sequence_length
key_len = keys.shape[1] # sequence_length
value_len = values.shape[1] # sequence_length
queries = self.queries(queries)
keys = self.keys(keys)
values = self.values(values)
# Split the embedding into self.heads pieces
# batch_size, sequence_length, embed_size(512) -->
# batch_size, sequence_length, heads(8), head_dim(64)
queries = queries.reshape(N, query_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
values = values.reshape(N, value_len, self.heads, self.head_dim)
# batch_size, sequence_length, heads(8), head_dim(64) -->
# batch_size, heads(8), sequence_length, head_dim(64)
queries = queries.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
# Scaled dot-product attention
score = torch.matmul(queries, keys.transpose(-2, -1)) / (self.head_dim ** (1/2))
if mask is not None:
score = score.masked_fill(mask == 0, float("-inf"))
# batch_size, heads(8), sequence_length, sequence_length
attention = torch.softmax(score, dim=-1)
out = torch.matmul(attention, values)
# batch_size, heads(8), sequence_length, head_dim(64) -->
# batch_size, sequence_length, heads(8), head_dim(64) -->
# batch_size, sequence_length, embed_size(512)
# 为了方便送入后面的网络
out = out.transpose(1, 2).contiguous().reshape(N, query_len, self.embed_size)
out = self.fc_out(out)
return out
batch_size = 64
sequence_length = 10
embed_size = 512
heads = 8
mask = None
Q = torch.randn(batch_size, sequence_length, embed_size)
K = torch.randn(batch_size, sequence_length, embed_size)
V = torch.randn(batch_size, sequence_length, embed_size)
model = Multi_Head_Self_Attention(embed_size, heads)
output = model(Q, K, V, mask)
print(output.shape)