Transformer——多头注意力机制(Pytorch)

  1. 原理图

  2. 代码

python 复制代码
import torch
import torch.nn as nn


class Multi_Head_Self_Attention(nn.Module):
    def __init__(self, embed_size, heads):
        super(Multi_Head_Self_Attention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.keys = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.values = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.fc_out = nn.Linear(self.embed_size, self.embed_size, bias=False)

    def forward(self,queries, keys, values, mask):
        N = queries.shape[0]  # batch_size
        query_len = queries.shape[1]  # sequence_length
        key_len = keys.shape[1]  # sequence_length 
        value_len = values.shape[1]  # sequence_length

        queries = self.queries(queries)
        keys = self.keys(keys)
        values = self.values(values)

        # Split the embedding into self.heads pieces
        # batch_size, sequence_length, embed_size(512) --> 
        # batch_size, sequence_length, heads(8), head_dim(64)
        queries = queries.reshape(N, query_len, self.heads, self.head_dim)
        keys = keys.reshape(N, key_len, self.heads, self.head_dim)
        values = values.reshape(N, value_len, self.heads, self.head_dim)

        # batch_size, sequence_length, heads(8), head_dim(64) --> 
        # batch_size, heads(8), sequence_length, head_dim(64)
        queries = queries.transpose(1, 2)
        keys = keys.transpose(1, 2)
        values = values.transpose(1, 2)

        # Scaled dot-product attention
        score = torch.matmul(queries, keys.transpose(-2, -1)) / (self.head_dim ** (1/2))

        if mask is not None:
            score = score.masked_fill(mask == 0, float("-inf"))
        # batch_size, heads(8), sequence_length, sequence_length
        attention = torch.softmax(score, dim=-1)

        out = torch.matmul(attention, values)
        # batch_size, heads(8), sequence_length, head_dim(64) -->
        # batch_size, sequence_length, heads(8), head_dim(64) -->
        # batch_size, sequence_length, embed_size(512)
        # 为了方便送入后面的网络
        out = out.transpose(1, 2).contiguous().reshape(N, query_len, self.embed_size)
        out = self.fc_out(out)

        return out
    

batch_size = 64
sequence_length = 10
embed_size = 512
heads = 8
mask = None

Q = torch.randn(batch_size, sequence_length, embed_size)  
K = torch.randn(batch_size, sequence_length, embed_size)  
V = torch.randn(batch_size, sequence_length, embed_size)  

model = Multi_Head_Self_Attention(embed_size, heads)
output = model(Q, K, V, mask)
print(output.shape)
相关推荐
AndrewHZ10 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
亲持红叶1 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
绝顶大聪明10 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
Danceful_YJ10 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
LGGGGGQ13 小时前
嵌入式学习-PyTorch(7)-day23
人工智能·pytorch·学习
甄卷13 小时前
李沐动手学深度学习Pytorch-v2笔记【08线性回归+基础优化算法】2
pytorch·深度学习·算法
PyAIExplorer13 小时前
PyTorch 损失函数详解:从理论到实践
人工智能·pytorch·python
豆豆13 小时前
神经网络构建
人工智能·深度学习·神经网络