持续学习的综述: 理论、方法与应用(三:泛化分析)

前文连接:持续学习的综述: 理论、方法与应用(一)

前文连接:持续学习的综述: 理论、方法与应用(二:理论基础)

泛化分析

目前持续学习的理论研究主要是在增量任务的训练集上进行的,假设它们的测试集遵循相似的分布,候选解具有相似的泛化性。然而,由于学习多个任务的目标通常是高度非凸的,因此存在许多局部最优解,它们在每个训练集上的表现相似,但在测试集上的泛化性却有显著不同[313],[443]。对于持续学习,理想的解决方案不仅需要从训练集到测试集的任务内泛化性,还需要任务间泛化性,以适应其分布的增量变化。

相关推荐
飞哥数智坊34 分钟前
AI协同研发探索:Claude Code 初试
人工智能
szxinmai主板定制专家38 分钟前
国产RK3568+FPGA以 ‌“实时控制+高精度采集+灵活扩展”‌ 为核心的解决方案
大数据·运维·网络·人工智能·fpga开发·机器人
訾博ZiBo40 分钟前
AI日报 - 2025年04月25日
人工智能
jndingxin1 小时前
OpenCV 图形API(52)颜色空间转换-----将 NV12 格式的图像数据转换为 RGB 格式的图像
人工智能·opencv·计算机视觉
华为云PaaS服务小智1 小时前
《重塑AI应用架构》系列: Serverless与MCP融合创新,构建AI应用全新智能中枢
人工智能·架构·serverless·华为云
pljnb1 小时前
循环神经网络(RNN)
人工智能·rnn·深度学习
annus mirabilis2 小时前
PyTorch 入门指南:从核心概念到基础实战
人工智能·pytorch·python
昊昊该干饭了2 小时前
【金仓数据库征文】从 HTAP 到 AI 加速,KingbaseES 的未来之路
数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
摸鱼仙人~2 小时前
深度学习优化器和调度器的选择和推荐
人工智能·深度学习
二川bro3 小时前
AI与Web3.0:技术融合
人工智能·web3