持续学习的综述: 理论、方法与应用(三:泛化分析)

前文连接:持续学习的综述: 理论、方法与应用(一)

前文连接:持续学习的综述: 理论、方法与应用(二:理论基础)

泛化分析

目前持续学习的理论研究主要是在增量任务的训练集上进行的,假设它们的测试集遵循相似的分布,候选解具有相似的泛化性。然而,由于学习多个任务的目标通常是高度非凸的,因此存在许多局部最优解,它们在每个训练集上的表现相似,但在测试集上的泛化性却有显著不同[313],[443]。对于持续学习,理想的解决方案不仅需要从训练集到测试集的任务内泛化性,还需要任务间泛化性,以适应其分布的增量变化。

相关推荐
TDengine (老段)1 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine
蓝桉8021 小时前
如何进行神经网络的模型训练(视频代码中的知识点记录)
人工智能·深度学习·神经网络
星期天要睡觉2 小时前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
笑脸惹桃花2 小时前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
南山二毛3 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
大数据张老师3 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****3 小时前
吴恩达机器学习合集
人工智能·机器学习
anneCoder3 小时前
AI大模型应用研发工程师面试知识准备目录
人工智能·深度学习·机器学习
骑驴看星星a3 小时前
没有深度学习
人工智能·深度学习
youcans_3 小时前
【医学影像 AI】YoloCurvSeg:仅需标注一个带噪骨架即可实现血管状曲线结构分割
人工智能·yolo·计算机视觉·分割·医学影像