持续学习的综述: 理论、方法与应用(三:泛化分析)

前文连接:持续学习的综述: 理论、方法与应用(一)

前文连接:持续学习的综述: 理论、方法与应用(二:理论基础)

泛化分析

目前持续学习的理论研究主要是在增量任务的训练集上进行的,假设它们的测试集遵循相似的分布,候选解具有相似的泛化性。然而,由于学习多个任务的目标通常是高度非凸的,因此存在许多局部最优解,它们在每个训练集上的表现相似,但在测试集上的泛化性却有显著不同[313],[443]。对于持续学习,理想的解决方案不仅需要从训练集到测试集的任务内泛化性,还需要任务间泛化性,以适应其分布的增量变化。

相关推荐
赛丽曼2 小时前
机器学习-K近邻算法
人工智能·机器学习·近邻算法
大懒猫软件3 小时前
如何运用python爬虫获取大型资讯类网站文章,并同时导出pdf或word格式文本?
python·深度学习·自然语言处理·网络爬虫
啊波次得饿佛哥3 小时前
7. 计算机视觉
人工智能·计算机视觉·视觉检测
XianxinMao4 小时前
RLHF技术应用探析:从安全任务到高阶能力提升
人工智能·python·算法
Swift社区4 小时前
【分布式日志篇】从工具选型到实战部署:全面解析日志采集与管理路径
人工智能·spring boot·分布式
Quz5 小时前
OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯
图像处理·人工智能·opencv·计算机视觉·矩阵
去往火星5 小时前
OpenCV文字绘制支持中文显示
人工智能·opencv·计算机视觉
海里的鱼20225 小时前
yolov11配置环境,实现OBB带方向目标检测
人工智能·yolo·目标检测·计算机视觉
道友老李5 小时前
【自然语言处理(NLP)】介绍、发展史
人工智能·自然语言处理
有Li6 小时前
基于深度学习的微出血自动检测及解剖尺度定位|文献速递-视觉大模型医疗图像应用
人工智能·深度学习