持续学习的综述: 理论、方法与应用(三:泛化分析)

前文连接:持续学习的综述: 理论、方法与应用(一)

前文连接:持续学习的综述: 理论、方法与应用(二:理论基础)

泛化分析

目前持续学习的理论研究主要是在增量任务的训练集上进行的,假设它们的测试集遵循相似的分布,候选解具有相似的泛化性。然而,由于学习多个任务的目标通常是高度非凸的,因此存在许多局部最优解,它们在每个训练集上的表现相似,但在测试集上的泛化性却有显著不同[313],[443]。对于持续学习,理想的解决方案不仅需要从训练集到测试集的任务内泛化性,还需要任务间泛化性,以适应其分布的增量变化。

相关推荐
Hcoco_me3 分钟前
LLM(Large Language Model)系统学习路线清单
人工智能·算法·自然语言处理·数据挖掘·聚类
fuzamei88820 分钟前
AI+区块链:为数字金融构建可信交易底座—吴思进出席“中国数字金融独角兽榜单2025交流会”
大数据·人工智能
盟接之桥25 分钟前
盟接之桥--说制造:从“找缝隙”到“一万米深”——庖丁解牛式的制造业精进之道
大数据·前端·数据库·人工智能·物联网·制造
王中阳Go26 分钟前
12 Go Eino AI应用开发实战 | 消息队列架构
人工智能·后端·go
deephub1 小时前
1小时微调 Gemma 3 270M 端侧模型与部署全流程
人工智能·深度学习·大语言模型·gemma
Coding茶水间1 小时前
基于深度学习的草莓健康度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
weisian1511 小时前
入门篇--人工智能发展史-6-AI视觉的“注意力革命”,大模型的核心动力--Transformer
人工智能·深度学习·transformer
_Li.1 小时前
机器学习-特征选择
人工智能·python·机器学习
囊中之锥.1 小时前
机器学习第一部分---线性回归
人工智能·机器学习·线性回归
司马阅-SmartRead1 小时前
学术研究与产业实践深度融合:司马阅AI合伙人冀文辉亮相「首届创新管理与JPIM论文工作坊」,产学研一体化推动企业AI落地
大数据·人工智能