【LLMs】大语言模型分类

随着大语言模型(LLM)技术的发展,它们主要被划分为两个类别:基础LLM(Base LLM)和指令调优LLM(Instruction-Tuned LLM)。Base LLM侧重于广泛的语言理解和生成能力,而Instruction-Tuned LLM则在Base LLM基础上,通过在特定指令集上进行优化,以提高对特定任务的适应性和性能。

Base LLM

Base LLM主要是利用大量文本训练数据,来训练模型预测下一个词的能力。在训练过程中,通过向LLM输入文本或指令,让LLM对其进行预测,补齐接下来可能出现的词,以此作为问题的回答。比如:

Input:
Once upon a time, there was a unicorn

output:
that lived in a magical forest with all her unicorn friends

在上述实例中,输入"从前,有一只独角兽"的文本后,模型对句子的内容进行了补全,给出了"它与所有的独角兽朋友们一起,居住在一片魔法森林里"的补充说明。然而,有时候,当向Base LLM输入一些提问时,也可能得到不靠谱的答案,比如:

Input:
What is the capital of France?

Output:
What is France's largest city?
What is France's population?
What is the currency of France?

当询问模型法国的首都时,收到的答复却是一连串关于法国的其他问题。这种现象的出现,可能是因为模型的训练数据源自互联网上的一个法国小测验问题列表。在这个列表中,问题以特定的序列排列,模型可能学习并模仿了这种序列,而不是直接识别和回答具体的问题。

Instruction-Tuned LLM

尽管Base LLM在一些语言处理任务中展现出较为卓越的能力,但在特定任务的处理上可能存在局限性。为了克服这些局限性,Instruction-Tuned LLM开始被关注和研究。这类模型以经过大量文本数据训练的Base LLM为基础,并通过特定任务的输入输出数据进行微调,以提升其在这些任务上的表现。Instruction-Tuned LLM的进一步优化通常涉及到使用RLHF(基于人类反馈的强化学习)技术,这种方法通过人类的直接反馈来指导模型的学习过程,从而确保生成的输出不仅准确,而且符合社会价值观和伦理标准。因此,与Base LLM相比,经过指令调优的LLM在生成有帮助、诚实且无害的文本方面表现更为出色。目前很多实际应用场景已经开始向Instruction-Tuned LLM转移。

另外,一个来自吴恩达教授的观点:当你在使用Instruction-Tuned LLM时,可以将这个过程看作是向一个聪明但是不知道任务细节的人发出指令。如果遇到模型给出的答案不太理想的情况,有时可能是因为输入的指令不够清晰。因此,当你希望LLM给出一个较为满意的结果时,最好将问题尽可能地具体化。

参考教程:《ChatGPT Prompt Engineering for Developers》

相关推荐
沐雪架构师14 分钟前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)1 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui1 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20252 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥2 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空3 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代3 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
Fhd-学习笔记4 小时前
《大语言模型》综述学习笔记
笔记·学习·语言模型
山晨啊85 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天5 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式