稀疏辅助信号平滑方法在一维信号降噪和旋转机械故障诊断中的应用(MATLAB)

基于形态成分分析理论(MCA)的稀疏辅助信号分解方法是由信号的形态多样性来分解信号中添加性的混合信号成分,它最早被应用在图像处理领域,后来被引入到一维信号的处理中。在基于MCA稀疏辅助的信号分析模型中,总变差方法TV是其中一个原型,稀疏辅助平滑方法结合并统一了传统的LTI低通滤波和总变差算法,兼具LTI低通滤波和总变差算法的优势,稀疏辅助平滑降噪的适用性更广泛,降噪的表现更好。已有研究说明,稀疏辅助平滑降噪相比低通滤波器能够有效保留瞬态冲击的幅值。

鉴于此,采用稀疏辅助信号平滑方法对一维信号进行降噪,并将其应用于旋转机械故障诊断中,程序运行环境为MATLAB 2018。

复制代码
function [x,f,cost] = lpfcsd(y, d, fc, lam0, lam1, Nit, mu)
% [x, f, cost] = lpfcsd(y, d, fc, lam0, lam1, Nit, mu)
% Simultaneous low-pass filtering and compound sparsity denoising 
%
% INPUT
%   y - noisy data
%   d - degree of filter is 2d (use d = 1, 2, or 3)
%   fc - cut-off frequency (normalized frequency, 0 < fc < 0.5)
%   lam0, lam1 - regularization parameters for x and diff(x)
%   Nit - number of iterations
%   mu - ADMM parameter
%
% OUTPUT
%   x - TV component
%   f - LPF component
%   cost - cost function history



y = y(:);                   % convert to column vector
cost = zeros(1, Nit);       % cost function history
N = length(y);

[A, B] = ABfilt(d, fc, N);
Id = @(x) x(d+1:N-d);
H = @(x) A\(B*x);                      % H: high-pass filter
G = mu*(A*A') + B*B';                  % G: banded matrix [sparse]
bn = nan + zeros(d, 1);              % bn : nan's to extend f to length N

v = zeros(N, 1);                       % initializations
d = zeros(N, 1);
b = (1/mu) * B'*((A*A')\(B*y));

for k = 1:Nit
    g = b + v - d;
    x = g - B' * (G \ (B*g));          % banded system solve (G)
    v = tvd(x + d, N, lam1/mu);        % TV denoising
    v = soft(v, lam0/mu);        
    v = v(:);
    d = d + x - v;
    cost(k) = lam0 * sum(abs(x)) + lam1 * sum(abs(diff(x))) + 0.5 * sum(abs(H(x-y)).^2);
end

f = y - x - [bn; H(y-x); bn];          % f : low-pass component
复制代码
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
知乎学术咨询:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
新智元2 分钟前
AI 教父 Hinton 末日警告!你必须失业,AI 万亿泡沫豪赌才能「赢」
人工智能·openai
新智元7 分钟前
CUDA 再见了!寒武纪亮出软件全家桶
人工智能·openai
oe101913 分钟前
好文与笔记分享 A Survey of Context Engineering for Large Language Models(下)
人工智能·笔记·语言模型·agent
有为少年14 分钟前
告别乱码:OpenCV 中文路径(Unicode)读写的解决方案
人工智能·opencv·计算机视觉
FreeCode1 小时前
LangChain1.0智能体开发:模型使用
人工智能·langchain·agent
Freshman小白1 小时前
python算法打包为docker镜像(边缘端api服务)
python·算法·docker
张较瘦_1 小时前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
mit6.8241 小时前
[VT-Refine] Simulation | Fine-Tuning | docker/run.sh
算法
anscos1 小时前
庭田科技亮相成都复材盛会,以仿真技术赋能产业革新
大数据·人工智能·科技
朴shu1 小时前
Delta数据结构:深入剖析高效数据同步的奥秘
javascript·算法·架构