pytorch-LSTM

目录

  • [1. RNN存在的问题](#1. RNN存在的问题)
  • [2. LSTM的由来](#2. LSTM的由来)
  • [3. LSTM门](#3. LSTM门)
    • [3.1 遗忘门](#3.1 遗忘门)
    • [3.2 输入门](#3.2 输入门)
    • [3.3 输出门](#3.3 输出门)
  • [4. LSTM是如何减轻梯度弥散问题](#4. LSTM是如何减轻梯度弥散问题)

1. RNN存在的问题

如下图:RNN能满足预测下一个单词,但是对于获取更多的上下文信息就做不到了。

2. LSTM的由来

RNN能做到短时记忆即short time memory,而LSTM相对RNN能够处理更长的时间序列,因此被称为LSTM即long short time memory

RNN有一串重复的模块,这些模块使用统一的权重Whh和Wih

LSTM也有一连串的类似结构,但是重复模块是不同的结构,它用四个单层的神经网络替代,并以指定的方式相互作用。它有三个门,分别是遗忘门、输入门和输出门。

3. LSTM门

门是一种信息过滤方式,他们由sigmod函数和点乘操作组成,sigmod范围是0~1,因此通过sigmod函数可以控制输出。

3.1 遗忘门

遗忘门ft是ht-1和xt经过一系列运算,再经过sigmod函数得到的

3.2 输入门

输入门由两部分组成,一个是it输入门层,它是通过ht-1和xt经过一系列运算,再经过sigmod函数得到的。

另一个是新的输入Ct',这里没有直接使用xt作为输入,而是通过ht-1和xt经过一系列运算,再经过tanh函数得到新的输入Ct'

最后输出Ct = ft*Ct-1 + it*Ct'

3.3 输出门

输出门ot也是通过ht-1和xt经过一系列运算,再经过sigmod函数得到的。

最后的输出ht = ot*tanh(Ct)
注意:LSTM中ht已经不是memory了,而是输出,Ct才是memory

可以看出每个门的运算都与ht-1和xt相关,并且通过sigmod函数来控制门的开度,最后的输出ht使用了tanh

输入们和遗忘门门的组合,会得到不同的值,如下图:

4. LSTM是如何减轻梯度弥散问题

从梯度计算公式可以知道,RNN的梯度中有Whh的累乘,当Whh<1时,就可能出现梯度弥散,而LSTM梯度由几项累加得到,即使W很小也很难出现梯度弥散。

相关推荐
递归不收敛2 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记大纲
pytorch·学习·机器学习
递归不收敛5 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:2.4 激活函数与多类别处理
pytorch·学习·机器学习
CH3_CH2_CHO11 小时前
DAY03:【DL 第一弹】神经网络
人工智能·pytorch·深度学习·神经网络
递归不收敛14 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.4 强化学习
pytorch·学习·机器学习
递归不收敛16 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.4 模型评估与问题解决
pytorch·学习·机器学习
fyakm20 小时前
GAN入门:生成器与判别器原理(附Python代码)
rnn·深度学习·神经网络
fyakm1 天前
RNN的注意力机制:原理与实现(代码示例)
rnn·深度学习·神经网络
蒋星熠1 天前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉
it技术1 天前
Pytorch项目实战 :基于RNN的实现情感分析
pytorch·后端
mooooon L2 天前
DAY 43 复习日-2025.10.7
人工智能·pytorch·python·深度学习·神经网络