GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!

GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!

目录

效果一览














基本介绍

1.GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!运行环境Matlab2023b及以上;

2.excel数据,方便替换,先运行main1_GA_Kmeans对时序数据进行聚类、再运行main2_Transformer_GRU对聚类后的数据进行识别,其余为函数文件无需运行,可在下载区获取数据和程序内容,适用于交通、气象、负荷等领域。

3.图很多,包括聚类效果图、分类识别效果图,混淆矩阵图。命令窗口输出分类准确率、灵敏度、特异性、曲线下面积、Kappa系数、F值。

4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

程序设计

  • 完整源码和数据获取方式私信博主回复GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

t_train = categorical(T_train)';
t_test  = categorical(T_test )';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1} = P_test( :, :, 1, i);
end


%网络搭建
numChannels = num_dim;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
机器学习之心11 小时前
基于双向时序卷积网络与门控循环单元(BiTCN-GRU)混合模型的时间序列预测MATLAB代码
网络·matlab·gru·bitcn-gru
机器学习之心18 小时前
SSA-Transformer-LSTM麻雀搜索算法优化组合模型分类预测结合SHAP分析!优化深度组合模型可解释分析,Matlab代码
分类·lstm·transformer·麻雀搜索算法优化·ssa-transformer
Rock_yzh1 天前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
yuluo_YX1 天前
语义模型 - 从 Transformer 到 Qwen
人工智能·深度学习·transformer
大千AI助手2 天前
Megatron-LM张量并行详解:原理、实现与应用
人工智能·大模型·llm·transformer·模型训练·megatron-lm张量并行·大千ai助手
Cathy Bryant2 天前
智能模型对齐(一致性)alignment
笔记·神经网络·机器学习·数学建模·transformer
知识搬运工人2 天前
传统卷积神经网络中的核心运算是卷积或者矩阵乘,请问transformer模型架构主要的计算
矩阵·cnn·transformer
跳跳糖炒酸奶3 天前
第九章、GPT1:Improving Language Understanding by Generative Pre-Training(理论部分)
transformer·解码器·gpt1
Yeats_Liao3 天前
华为开源自研AI框架昇思MindSpore应用案例:跑通Vision Transformer图像分类
人工智能·华为·transformer
AndrewHZ3 天前
【图像处理基石】图像Inpainting入门详解
图像处理·人工智能·深度学习·opencv·transformer·图像修复·inpainting