【CPO-TCN-BiGRU-Attention回归预测】基于冠豪猪算法CPO优化时间卷积双向门控循环单元融合注意力机制

基于冠豪猪算法CPO(Correlation-Preservation Optimization)优化的时间卷积双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)融合注意力机制(Attention)的回归预测需要详细的实现和数据情况才能给出具体的示例代码。以下是一个基本的框架和描述,供您参考。

数据准备:

假设有多个输入特征 X1, X2, ..., Xn 和一个目标变量 Y,形状分别为 (样本数, 特征数) 和 (样本数, 1)。

假设数据已经准备好,并且已经根据需要进行了预处理,例如标准化。

CPO优化:

CPO是一种用于优化模型的算法,旨在保留时间序列数据中的相关性信息。

使用CPO算法对输入特征 Xi 进行优化,以增强特征之间的相关性和模式的保留。

时间卷积双向门控循环单元(BiGRU):

使用BiGRU来捕捉时间序列数据中的时序模式和依赖关系。

将优化后的输入特征 Xi 作为输入,构建BiGRU模型,可以根据数据的特点和需求设计具体的网络结构。

BiGRU可以包含一些双向GRU层和适当的激活函数和正则化方法。

注意力机制(Attention):

使用注意力机制来对模型学习到的特征进行加权,以强调重要的特征和时刻。

将BiGRU的输出作为注意力机制的输入,构建注意力模型,可以根据数据的特点和需求设计具体的网络结构。

注意力机制可以包含一些注意力层和适当的激活函数和正则化方法。

模型集成和预测:

将注意力机制的输出与原始特征进行融合,例如使用加权平均或其他集成方法。

最终的预测结果即为集成后的输出,可以根据需要进行反向转换或后处理,得到最终的预测值。

相关推荐
黄金小码农6 分钟前
工具坐标系
算法
小南家的青蛙13 分钟前
LeetCode第1261题 - 在受污染的二叉树中查找元素
算法·leetcode·职场和发展
君义_noip16 分钟前
信息学奥赛一本通 1453:移动玩具 | 洛谷 P4289 [HAOI2008] 移动玩具
c++·算法·信息学奥赛·csp-s
玖剹23 分钟前
记忆化搜索题目(二)
c语言·c++·算法·leetcode·深度优先·剪枝·深度优先遍历
Xy-unu1 小时前
[LLM]AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
论文阅读·人工智能·算法·机器学习·transformer·论文笔记·剪枝
Hcoco_me1 小时前
算法选型 + 调参避坑指南
算法
Jul1en_1 小时前
【算法】分治-归并类题目
java·算法·leetcode·排序算法
kangk121 小时前
统计学基础之概率(生物信息方向)
人工智能·算法·机器学习
再__努力1点1 小时前
【77】积分图像:快速计算矩形区域和核心逻辑
开发语言·图像处理·人工智能·python·算法·计算机视觉
唯唯qwe-2 小时前
Day22: 贪心算法 | 区间问题,左/右端点排序
算法·贪心算法