一种成分分离方法(Python)

理论基础以后加入。

import warnings
warnings.filterwarnings('ignore')
import time
import numpy as np
import torch
import scipy
import scipy.optimize as opt
import matplotlib.pyplot as plt
import pywph as pw
import os 
cwd = os.getcwd()
import sys
sys.path.append(cwd)
from comp_sep_functions import create_batch, compute_bias_std, compute_mask, compute_loss_BR, compute_loss_JMD
from tools import plot, plot_PS, plot_wph

Data loading

s = np.load('dust_simulation.npy').astype(np.float64)
plot(s)

Mock data generation

SNR = 2
n = np.random.normal(0,np.std(s)/SNR,size=np.shape(s)).astype(np.float64)
d = s + n
plot(d)
plot_PS(np.array([d,s,n]),labels=['d','s','n'])
Mn = 20
noise = np.random.normal(0,np.std(s)/SNR,size=(Mn,np.shape(s)[0],np.shape(s)[0])).astype(np.float64)

Parameters setting

N, N = np.shape(s) # map size
J = int(np.log2(N))-2 # number of scales
L = 4 # number of angles
pbc = True # periodic boundary conditions
dn = 5 # number of translations
wph_model = ["S11","S00","S01","Cphase","C01","C00","L"] # list of WPH coefficients
style = 'JMD'
method = 'L-BFGS-B'
n_epoch = 5
n_iter = 50
device = "cpu"
batch_size = 5

Initialization

batch_number = int(Mn/batch_size)
n_batch = create_batch(noise, device, batch_number, batch_size, N)
wph_op = pw.WPHOp(N, N, J, L=L, dn=dn, device=device)

Objective function

def objective(x):
    """
    Computes the loss and the corresponding gradient.


    Parameters
    ----------
    x : torch 1D tensor
        Flattened running map.


    Returns
    -------
    float
        Loss value.
    torch 1D tensor
        Gradient of the loss.


    """
    global eval_cnt
    global loss_list
    start_time = time.time()
    u = x.reshape((N, N)) # Reshape x
    u = torch.from_numpy(u).to(device).requires_grad_(True) # Track operations on u
    if style == 'BR':
        L = compute_loss_BR(u, coeffs_target, std, mask, device, Mn, wph_op, noise, pbc) # Compute the loss 'à la Bruno'
    if style == 'JMD':
        L = compute_loss_JMD(u, coeffs_target, std, mask, device, wph_op, pbc) # Compute the loss 'à la Jean-Marc'
    u_grad = u.grad.cpu().numpy().astype(x.dtype) # Compute the gradient
    if eval_cnt % 5 == 0:
        print(f"Evaluation: {eval_cnt}")
        print("L = "+str(round(L.item(),5)))
        print("(computed in "+str(round(time.time() - start_time,3))+"s)")
        print("")
    eval_cnt += 1
    loss_list.append(L.item())
    return L.item(), u_grad.ravel()

Beginning of the optimization

# Initialization of evaluation count.
eval_cnt = 0
# Initialization of the running map s_tilde0.
s_tilde0 = d
# Creation of the loss list.
loss_list = []
# WPH model loading (only the power-spectrum-like coefficients in the first step).
wph_op.load_model(["S11"])
# Loop of the epochs.
for i in range(n_epoch):
    print("Starting epoch "+str(i+1)+"...")
    # Bring s_tilde0 from array to tensor.
    s_tilde0 = torch.from_numpy(s_tilde0).to(device)
    print('Computing loss arguments...')
    # Computation of the noise-induced bias and std on the s_tilde0 map.
    # The bias is only used for style='JMD', but is computed 
    # in both cases (no significant additional calculations).
    bias, std = compute_bias_std(s_tilde0, n_batch, wph_op, pbc, Mn, batch_number, batch_size, device)
    # Computation of the WPH statistics of "d".
    coeffs = wph_op.apply(torch.from_numpy(d).to(device), norm=None, pbc=pbc)
    if style == 'BR':
        # In BR's formalism, the target WPH coefficients are the ones of "d". 
        # They are split into real and imaginary parts.
        coeffs_target = torch.cat((torch.unsqueeze(torch.real(coeffs),dim=0),
                                   torch.unsqueeze(torch.imag(coeffs),dim=0)))
    if style == 'JMD':
        # In JMD's formalism, the target WPH coefficients are computed as 
        # the ones of "d" corrected from the bias estimated before.
        # They are here also split into real and imaginary parts.
        coeffs_target = torch.cat((torch.unsqueeze(torch.real(coeffs)-bias[0],dim=0),
                                   torch.unsqueeze(torch.imag(coeffs)-bias[1],dim=0)))
    # Computation of the mask for the WPH statistics threshold.
    mask = compute_mask(1, s_tilde0, std, wph_op, wph_model, pbc, device)
    print('Loss arguments computed !')
    print('Beginning optimization...')
    # Beginning of the optimization.
    result = opt.minimize(objective, s_tilde0.cpu().ravel(), method=method, jac=True, tol=None,
                          options={"maxiter": n_iter, "gtol": 1e-14, "ftol": 1e-14, "maxcor": 20})
    final_loss, s_tilde0, niter, msg = result['fun'], result['x'], result['nit'], result['message']
    # Reshaping of the running map s_tilde0.
    s_tilde0 = s_tilde0.reshape((N, N)).astype(np.float64)
    print("Epoch "+str(i+1)+" done !")
    # Plot of the running map.
    plot(s_tilde0)
plt.figure()
plt.plot(loss_list)
plt.yscale('log')
plt.show()
plot_PS(
        np.array([d,s,s_tilde0]),
        labels=['d','s','s_tilde0'],
        colors=['blue','orange','orange'],
        styles=['-','-','--']
        )
# Initialization of evaluation count.
eval_cnt = 0
# Initialization of the running map s_tilde.
s_tilde = s_tilde0
# Creation of the loss list.
loss_list = []
# WPH model loading (all the WPH coefficients in the second step).
wph_op.load_model(wph_model)
# Loop of the epochs.
for i in range(n_epoch):
    print("Starting epoch "+str(i+1)+"...")
    # Bring s_tilde from array to tensor.
    s_tilde = torch.from_numpy(s_tilde).to(device)
    print('Computing loss arguments...')
    # Computation of the noise-induced bias and std on the s_tilde map.
    # The bias is only used for style='JMD', but is computed
    # in both cases (no significant additional calculations).
    bias, std = compute_bias_std(s_tilde, n_batch, wph_op, pbc, Mn, batch_number, batch_size, device)
    # Computation of the WPH statistics of "d".
    coeffs = wph_op.apply(torch.from_numpy(d).to(device), norm=None, pbc=pbc)
    if style == 'BR':
        # In BR's formalism, the target WPH coefficients are the ones of "d". 
        # They are split into real and imaginary parts.
        coeffs_target = torch.cat((torch.unsqueeze(torch.real(coeffs),dim=0),
                                   torch.unsqueeze(torch.imag(coeffs),dim=0)))
    if style == 'JMD':
        # In JMD's formalism, the target WPH coefficients are computed as 
        # the ones of "d" corrected from the bias estimated before.
        # They are here also split into real and imaginary parts.
        coeffs_target = torch.cat((torch.unsqueeze(torch.real(coeffs)-bias[0],dim=0),
                                   torch.unsqueeze(torch.imag(coeffs)-bias[1],dim=0)))
    # Computation of the mask for the WPH statistics threshold.
    mask = compute_mask(2, s_tilde, std, wph_op, wph_model, pbc, device)
    print('Loss arguments computed !')
    print('Beginning optimization...')
    # Beginning of the optimization.
    result = opt.minimize(objective, s_tilde.cpu().ravel(), method=method, jac=True, tol=None, 
                          options={"maxiter": n_iter, "gtol": 1e-14, "ftol": 1e-14, "maxcor": 20})
    final_loss, s_tilde, niter, msg = result['fun'], result['x'], result['nit'], result['message']
    # Reshaping of the running map s_tilde.
    s_tilde = s_tilde.reshape((N, N)).astype(np.float64)
    print("Epoch "+str(i+1)+" done !")
    # Plot of the running map.
    plot(s_tilde)
plt.figure()
plt.plot(loss_list)
plt.yscale('log')
plt.show()
plot(s_tilde)
工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

知乎学术咨询:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
张小生1803 分钟前
PyCharm中 argparse 库 的使用方法
python·pycharm
秃头佛爷3 分钟前
Python使用PDF相关组件案例详解
python
Dxy12393102164 分钟前
python下载pdf
数据库·python·pdf
叶知安5 分钟前
如何用pycharm连接sagemath?
ide·python·pycharm
weixin_432702269 分钟前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
BSV区块链10 分钟前
如何在BSV区块链上实现可验证AI
人工智能·区块链
y52364815 分钟前
Javascript监控元素样式变化
开发语言·javascript·ecmascript
菜鸟清风16 分钟前
ChromeDriver下载地址
python
武子康27 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub28 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer