大语言模型-Transformer-Attention Is All You Need

一、背景信息:

Transformer是一种由谷歌在2017年提出的深度学习模型。

主要用于自然语言处理(NLP)任务,特别是序列到序列(Sequence-to-Sequence)的学习问题,如机器翻译、文本生成等。Transformer彻底改变了之前基于循环神经网络(RNNs)和长短期记忆网络(LSTMs)的序列建模范式,并且在性能上取得了显著提升。

二、整体结构:

Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。

Transformer 的输入

Transformer 的输入由 x的 词向量位置向量 相加得到。

其中Transformer 在位置向量中保存单词在序列中的相对或绝对位置信息,位置向量由PE(Positional Encoding)表示:

eg:假设n为序列长度,d为表示向量维度,原始输入为 X o r i − i n p u t X_{ori-input} Xori−input( [ x 1 , x 2 . . . x n ] [x_{1},x_{2}...x_{n} ] [x1,x2...xn])

则,原始输入 X o r i − i n p u t X_{ori-input} Xori−input的词向量矩阵为 X W E X_{WE} XWE其维度为(n, d),

原始输入 X o r i − i n p u t X_{ori-input} Xori−input的位置向量矩阵 X P E X_{PE} XPE维度也为(n, d),

最终 Transformer 的输入矩阵 X i n p u t X_{input} Xinput = X W E X_{WE} XWE + X P E X_{PE} XPE维度也是(n, d)。

三、 Encoder

Encoder 部分由6个Encoder block 组成。
Encoder block 由Multi-Head Attention结合Add & Norm、Feed Forward结合 Add & Norm 组成。

即由下面两部分组成:
X = L a y d e r N o r m ( X i n p u t + M u l t i H e a d A t t e n t i o n ( X i n p u t ) ) X = LayderNorm(X_{input} + MultiHeadAttention(X_{input})) X=LayderNorm(Xinput+MultiHeadAttention(Xinput))
X = L a y d e r N o r m ( X + F e e d F o r w o r d ( X ) ) X = LayderNorm(X + FeedForword(X)) X=LayderNorm(X+FeedForword(X))

MultiHeadAttention部分

其中MultiHeadAttention 为多个Self-Attention 进行Concat后linear而成:
Q = X i n p u t × W q Q = X_{input} \times W_{q} Q=Xinput×Wq
K = X i n p u t × W k K = X_{input} \times W_{k} K=Xinput×Wk
V = X i n p u t × W v V = X_{input} \times W_{v} V=Xinput×Wv
Z = A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Z = Attention(Q, K, V) = softmax( \frac{QK^{T} }{\sqrt{d_{k}} } )V Z=Attention(Q,K,V)=softmax(dk QKT)V

其中, Z 1 . . . . Z 8 Z_{1}....Z_{8} Z1....Z8为X_{input} 经过8个不同Self-Attention得到的结果
X = M u l t i H e a d A t t e n t i o n ( X i n p u t ) = L i n e a r ( C o n c a t ( Z 1 , Z 2 . . . . Z 8 ) ) X =MultiHeadAttention(X_{input} ) = Linear(Concat(Z_{1},Z_{2}....Z_{8})) X=MultiHeadAttention(Xinput)=Linear(Concat(Z1,Z2....Z8))

FeedForword部分

Feed Forward 层,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,公式如下。

F e e d F o r w o r d ( X ) = m a x ( 0 , X W 1 + b 1 ) W 2 + b 2 FeedForword(X) = max(0, XW_{1} + b_{1})W_{2} + b_{2} FeedForword(X)=max(0,XW1+b1)W2+b2

四、 Decoder

Decoder 由 6个Decoder block 以及最后的一个linear组成。

Decoder block 由 一个带有 Masked的Multi-Head Attention结合Add & Norm和一个Multi-Head Attention结合Add & Norm以及一个Feed Forward结合 Add & Norm 组成。

X o u t p u t = X o u p u t − o r i ⊗ X M a s k X_{output}=X_{ouput-ori }\otimes X_{Mask} Xoutput=Xouput−ori⊗XMask
X = L a y d e r N o r m ( X o u t p u t + M a s k M u l t i H e a d A t t e n t i o n ( X o u p u t ) ) X = LayderNorm(X_{output} + MaskMultiHeadAttention(X_{ouput})) X=LayderNorm(Xoutput+MaskMultiHeadAttention(Xouput))

X = L a y d e r N o r m ( X + M u l t i H e a d A t t e n t i o n ( [ X a s Q , E C a s K , E C a s V ] ) X = LayderNorm(X + MultiHeadAttention([X_{as Q}, EC_{as K}, EC_{as V}]) X=LayderNorm(X+MultiHeadAttention([XasQ,ECasK,ECasV])
X r e s u l t = S o f t m a x ( X ) X_{result} = Softmax(X) Xresult=Softmax(X)

带有 Masked的Multi-Head Attention层

其中带有 Masked的Multi-Head Attention中 X o u p u t X_{ouput} Xouput为Transformer 标签对应输出向量; X o u p u t − o r i X_{ouput-ori} Xouput−ori需要先 ⊗ \otimes ⊗ X M a s k X_{Mask} XMask得到 X o u p u t X_{ouput} Xouput
Q = X o u p u t × W q Q = X_{ouput} \times W_{q} Q=Xouput×Wq
K = X o u p u t × W k K = X_{ouput} \times W_{k} K=Xouput×Wk
V = X o u p u t × W v V = X_{ouput} \times W_{v} V=Xouput×Wv
Z = A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ⊗ X M a s k ) V Z = Attention(Q, K, V) = softmax( \frac{QK^{T} }{\sqrt{d_{k}} } \otimes X_{Mask} )V Z=Attention(Q,K,V)=softmax(dk QKT⊗XMask)V

其中第二个 Multi-Head Attention层

Self-Attention 的 K, V矩阵使用的是根据Encoder编码的输出矩阵C计算得到 K, V; Self-Attention 的 Q矩阵是根据Decoder block中的Masked Multi-Head Attention层输出矩阵 Z 计算得到 Q。

Reference

1.Attention Is All You Need

2.Transformer模型详解(图解最完整版)

3.Self-Attention & Transformer完全指南:像Transformer的创作者一样思考

相关推荐
九年义务漏网鲨鱼1 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫3 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain