《昇思25天学习打卡营第20天|GAN图像生成》

生成对抗网络(GAN)是一种深度学习模型,用于生成逼真的图像。在手写数字识别的任务中,GAN 可以用来生成与真实手写数字相似的图像,以增强模型的训练数据集。GAN 主要由两个部分组成:生成器(Generator)和判别器(Discriminator)。

原理

  1. 生成器(Generator):

    • 生成器的任务是从随机噪声中生成逼真的图像。它接受一个随机向量(通常是高斯噪声),通过一系列的反卷积层(上采样)生成一个图像。
    • 生成器的目标是生成的图像尽可能逼真,以至于无法被判别器识别为假图像。
  2. 判别器(Discriminator):

    • 判别器的任务是区分真实图像和生成的图像。它接受一个图像(可能是生成的图像或真实的图像),通过一系列卷积层(下采样)进行特征提取,并最终输出一个概率值,表示图像是真实的还是生成的。
    • 判别器的目标是尽可能准确地识别出真实图像和生成图像。
  3. 对抗训练:

    • 训练过程中,生成器和判别器在一个对抗的环境中相互竞争。生成器尝试生成更加逼真的图像,以欺骗判别器;判别器则不断提高自己的识别能力,以更准确地区分真实和生成的图像。
    • 损失函数:
      • 判别器的损失函数是识别真实图像为真和识别生成图像为假的能力之和。
      • 生成器的损失函数是生成图像被判别器识别为真的能力。
    • 训练过程通常交替进行,即一次更新判别器参数,然后更新生成器参数。

在手写数字识别中的应用

在手写数字识别中,GAN 可以用来生成更多的手写数字图像,增强训练数据集。具体应用步骤如下:

  1. 数据准备:
    • 准备一部分真实的手写数字图像作为训练集。
  2. 训练 GAN:
    • 用真实手写数字图像训练判别器,使其能够区分真实图像和生成图像。
    • 用随机噪声训练生成器,使其生成的图像能够骗过判别器。
  3. 生成新图像:
    • 一旦 GAN 训练完成,生成器可以生成大量逼真的手写数字图像。
  4. 增强训练数据集:
    • 将生成的图像加入到原始训练集中,增加数据的多样性和数量。
  5. 训练识别模型:
    • 用增强后的数据集训练手写数字识别模型,提高其识别能力。
相关推荐
格林威8 分钟前
紫外工业相机入门介绍和工业检测核心场景
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测
高洁018 分钟前
【无标题】大模型-模型压缩:量化、剪枝、蒸馏、二值化 (2
人工智能·python·深度学习·神经网络·知识图谱
谈思汽车15 分钟前
AutoSec Europe 2026 第二届欧洲汽车网络安全与数据安全峰会启动报名!
人工智能
机器之心16 分钟前
LSTM之父Jürgen再突破,「赫胥黎-哥德尔机」让AI学会自己进化
人工智能·openai
WWZZ202523 分钟前
快速上手大模型:深度学习2(实践:深度学习基础、线性回归)
人工智能·深度学习·算法·计算机视觉·机器人·大模型·slam
初级炼丹师(爱说实话版)29 分钟前
算法面经常考题整理(1)机器学习
人工智能·算法·机器学习
FIT2CLOUD飞致云39 分钟前
支持添加外部面板、支持设置水印,1Panel v2.0.12版本正式发布
人工智能·开源
算家计算1 小时前
推理成本吞噬AI未来,云计算如何平衡速度与成本的难题?
人工智能·云计算·gpu
kalvin_y_liu1 小时前
Lumi 具神智能机器人 SDK说明和ACT算法中的学习与推理
人工智能·ai·ros
阿里云大数据AI技术1 小时前
云栖实录 | 阿里云助力金山办公打造智能搜索新标杆:WPS云文档搜索技术全面升级
人工智能·elasticsearch·搜索引擎