《昇思25天学习打卡营第20天|GAN图像生成》

生成对抗网络(GAN)是一种深度学习模型,用于生成逼真的图像。在手写数字识别的任务中,GAN 可以用来生成与真实手写数字相似的图像,以增强模型的训练数据集。GAN 主要由两个部分组成:生成器(Generator)和判别器(Discriminator)。

原理

  1. 生成器(Generator):

    • 生成器的任务是从随机噪声中生成逼真的图像。它接受一个随机向量(通常是高斯噪声),通过一系列的反卷积层(上采样)生成一个图像。
    • 生成器的目标是生成的图像尽可能逼真,以至于无法被判别器识别为假图像。
  2. 判别器(Discriminator):

    • 判别器的任务是区分真实图像和生成的图像。它接受一个图像(可能是生成的图像或真实的图像),通过一系列卷积层(下采样)进行特征提取,并最终输出一个概率值,表示图像是真实的还是生成的。
    • 判别器的目标是尽可能准确地识别出真实图像和生成图像。
  3. 对抗训练:

    • 训练过程中,生成器和判别器在一个对抗的环境中相互竞争。生成器尝试生成更加逼真的图像,以欺骗判别器;判别器则不断提高自己的识别能力,以更准确地区分真实和生成的图像。
    • 损失函数:
      • 判别器的损失函数是识别真实图像为真和识别生成图像为假的能力之和。
      • 生成器的损失函数是生成图像被判别器识别为真的能力。
    • 训练过程通常交替进行,即一次更新判别器参数,然后更新生成器参数。

在手写数字识别中的应用

在手写数字识别中,GAN 可以用来生成更多的手写数字图像,增强训练数据集。具体应用步骤如下:

  1. 数据准备:
    • 准备一部分真实的手写数字图像作为训练集。
  2. 训练 GAN:
    • 用真实手写数字图像训练判别器,使其能够区分真实图像和生成图像。
    • 用随机噪声训练生成器,使其生成的图像能够骗过判别器。
  3. 生成新图像:
    • 一旦 GAN 训练完成,生成器可以生成大量逼真的手写数字图像。
  4. 增强训练数据集:
    • 将生成的图像加入到原始训练集中,增加数据的多样性和数量。
  5. 训练识别模型:
    • 用增强后的数据集训练手写数字识别模型,提高其识别能力。
相关推荐
DeeGLMath1 分钟前
机器学习中回归训练的示例
人工智能·机器学习·回归
勇气要爆发2 分钟前
【第二阶段—机器学习入门】第十五章:机器学习核心概念
人工智能·机器学习
山东小木4 分钟前
A2UI:智能问数的界面构建策略
大数据·人工智能·jboltai·javaai·springboot ai·a2ui
认真学GIS6 分钟前
逐3小时降水量!全国2421个气象站点1951-2024年逐3小时尺度长时间序列降水量(EXCEL格式)数据
人工智能·算法·机器学习
龙山云仓6 分钟前
No098:黄道婆&AI:智能的工艺革新与技术传承
大数据·开发语言·人工智能·python·机器学习
LaughingZhu11 分钟前
Product Hunt 每日热榜 | 2025-12-20
人工智能·经验分享·深度学习·神经网络·产品运营
love530love11 分钟前
Win11+RTX3090 亲测 · ComfyUI Hunyuan3D 全程实录 ②:nvdiffrast 源码编译实战(CUDA 13.1 零降级)
人工智能·windows·python·github·nvdiffrast
————A12 分钟前
强化学习---->多臂老虎机问题
人工智能
pingao14137813 分钟前
从数据到预警:自动雨量监测站如何用科技解码暴雨密码
人工智能·科技
式51618 分钟前
大模型学习基础(六) 强化学习(Reinforcement Learning,RL)初步1.4
学习