leetcode日记(51)不同路径Ⅱ

和上一道题(无障碍物的最短路径)很像,但事实上比上一题多了优化方法

根据上一题改的代码如下,添加了对障碍物的判定,如果有障碍物则将数组值设为0。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        int a[m][n];
        for(int i=0;i<m;i++) for(int j=0;j<n;j++) a[i][j]=0;
        for(int i=0;i<n&&obstacleGrid[0][i]==0;i++) a[0][i]=1;
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) a[i][0]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0) a[i][j]=a[i-1][j]+a[i][j-1];
            }
        }
        return a[m-1][n-1];
    }
};

然后看了答案,答案说可以使用滚动数组优化,就又去搜了一下滚动数组的使用方法。

参考了一下63. 不同路径 II(C++)---动态规划解题(并进行滚动数组思想优化),琢磨了一下代码,原理是将上面的二维数组优化成了一维,记录开始位置到达每一行末尾的路径数。如有障碍物则直接将数目设为0,然后继续遍历这一行;没有障碍物就将数目设为上一行路径数加上这一行路径数。

需要注意的是遍历方向,按照上面这种思路需要先遍历列再遍历行,如果先遍历行,如果上一行末尾有障碍物那么下一行就通过不了。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        vector<int> a(m);
        a[0]=!obstacleGrid[0][0];
        for(int j=0;j<n;j++){
            for(int i=0;i<m;i++){
                if(obstacleGrid[i][j]) a[i]=0;
                else if(i>0&&!obstacleGrid[i-1][j]) a[i]+=a[i-1];
                cout<<i<<" "<<j<<" "<<a[i]<<endl;
            }
        }
        return a[m-1];
    }
};

感觉这个方法很熟悉,前几天的一道题也用过这种思路(虽然也是看答案知道的就是了)

相关推荐
mmz120720 小时前
前缀和问题2(c++)
c++·算法
TL滕20 小时前
从0开始学算法——第十六天(双指针算法)
数据结构·笔记·学习·算法
蒲小英20 小时前
算法-贪心算法
算法·贪心算法
mit6.82420 小时前
链式投票|流向贪心
算法
君义_noip21 小时前
洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
算法·数论·信息学奥赛·csp-s
天赐学c语言21 小时前
12.14 - 搜索旋转排序数组 && 判断两个结构体是否相等
数据结构·c++·算法·leecode
1024肥宅21 小时前
JavaScript 性能与优化:数据结构和算法
前端·数据结构·算法
kaikaile199521 小时前
MATLAB 灰度图像的二维傅里叶变换
算法·计算机视觉·matlab
仰泳的熊猫21 小时前
1112 Stucked Keyboard
数据结构·c++·算法·pat考试
roman_日积跬步-终至千里21 小时前
【计算机算法与设计(14)】例题五:最小生成树:Prim算法详细解释:π的含义、更新逻辑和选点原因
算法