leetcode日记(51)不同路径Ⅱ

和上一道题(无障碍物的最短路径)很像,但事实上比上一题多了优化方法

根据上一题改的代码如下,添加了对障碍物的判定,如果有障碍物则将数组值设为0。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        int a[m][n];
        for(int i=0;i<m;i++) for(int j=0;j<n;j++) a[i][j]=0;
        for(int i=0;i<n&&obstacleGrid[0][i]==0;i++) a[0][i]=1;
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) a[i][0]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0) a[i][j]=a[i-1][j]+a[i][j-1];
            }
        }
        return a[m-1][n-1];
    }
};

然后看了答案,答案说可以使用滚动数组优化,就又去搜了一下滚动数组的使用方法。

参考了一下63. 不同路径 II(C++)---动态规划解题(并进行滚动数组思想优化),琢磨了一下代码,原理是将上面的二维数组优化成了一维,记录开始位置到达每一行末尾的路径数。如有障碍物则直接将数目设为0,然后继续遍历这一行;没有障碍物就将数目设为上一行路径数加上这一行路径数。

需要注意的是遍历方向,按照上面这种思路需要先遍历列再遍历行,如果先遍历行,如果上一行末尾有障碍物那么下一行就通过不了。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        vector<int> a(m);
        a[0]=!obstacleGrid[0][0];
        for(int j=0;j<n;j++){
            for(int i=0;i<m;i++){
                if(obstacleGrid[i][j]) a[i]=0;
                else if(i>0&&!obstacleGrid[i-1][j]) a[i]+=a[i-1];
                cout<<i<<" "<<j<<" "<<a[i]<<endl;
            }
        }
        return a[m-1];
    }
};

感觉这个方法很熟悉,前几天的一道题也用过这种思路(虽然也是看答案知道的就是了)

相关推荐
秋说22 分钟前
【PTA数据结构 | C语言版】一元多项式求导
c语言·数据结构·算法
Maybyy35 分钟前
力扣61.旋转链表
算法·leetcode·链表
卡卡卡卡罗特3 小时前
每日mysql
数据结构·算法
chao_7893 小时前
二分查找篇——搜索旋转排序数组【LeetCode】一次二分查找
数据结构·python·算法·leetcode·二分查找
lifallen4 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
lixzest4 小时前
C++ Lambda 表达式详解
服务器·开发语言·c++·算法
EndingCoder4 小时前
搜索算法在前端的实践
前端·算法·性能优化·状态模式·搜索算法
丶小鱼丶4 小时前
链表算法之【合并两个有序链表】
java·算法·链表
不吃洋葱.4 小时前
前缀和|差分
数据结构·算法
是白可可呀7 小时前
LeetCode 169. 多数元素
leetcode