leetcode日记(51)不同路径Ⅱ

和上一道题(无障碍物的最短路径)很像,但事实上比上一题多了优化方法

根据上一题改的代码如下,添加了对障碍物的判定,如果有障碍物则将数组值设为0。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        int a[m][n];
        for(int i=0;i<m;i++) for(int j=0;j<n;j++) a[i][j]=0;
        for(int i=0;i<n&&obstacleGrid[0][i]==0;i++) a[0][i]=1;
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) a[i][0]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0) a[i][j]=a[i-1][j]+a[i][j-1];
            }
        }
        return a[m-1][n-1];
    }
};

然后看了答案,答案说可以使用滚动数组优化,就又去搜了一下滚动数组的使用方法。

参考了一下63. 不同路径 II(C++)---动态规划解题(并进行滚动数组思想优化),琢磨了一下代码,原理是将上面的二维数组优化成了一维,记录开始位置到达每一行末尾的路径数。如有障碍物则直接将数目设为0,然后继续遍历这一行;没有障碍物就将数目设为上一行路径数加上这一行路径数。

需要注意的是遍历方向,按照上面这种思路需要先遍历列再遍历行,如果先遍历行,如果上一行末尾有障碍物那么下一行就通过不了。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        vector<int> a(m);
        a[0]=!obstacleGrid[0][0];
        for(int j=0;j<n;j++){
            for(int i=0;i<m;i++){
                if(obstacleGrid[i][j]) a[i]=0;
                else if(i>0&&!obstacleGrid[i-1][j]) a[i]+=a[i-1];
                cout<<i<<" "<<j<<" "<<a[i]<<endl;
            }
        }
        return a[m-1];
    }
};

感觉这个方法很熟悉,前几天的一道题也用过这种思路(虽然也是看答案知道的就是了)

相关推荐
苦藤新鸡19 小时前
6.三数之和
c语言·c++·算法·力扣
s090713619 小时前
连通域标记:从原理到数学公式全解析
图像处理·算法·fpga开发·连通域标记
西伯利亚狼_J202019 小时前
资料260105EN初级
职场和发展
@小码农19 小时前
6547网:202512 GESP认证 C++编程 一级真题题库(附答案)
java·c++·算法
自然语19 小时前
人工智能之数字生命-特征类升级20260106
人工智能·算法
菜鸟233号19 小时前
力扣343 整数拆分 java实现
java·数据结构·算法·leetcode
赫凯19 小时前
【强化学习】第五章 时序差分算法
算法
leiming620 小时前
c++ find_if 算法
开发语言·c++·算法
yuanmenghao20 小时前
自动驾驶中间件iceoryx - 内存与 Chunk 管理(三)
数据结构·c++·算法·链表·中间件·自动驾驶
_OP_CHEN20 小时前
【算法基础篇】(四十三)数论之费马小定理深度解析:从同余性质到乘法逆元
c++·算法·蓝桥杯·数论·acm/icpc