Tensorflow中高维矩阵的乘法运算tf.matmul(tf.linalg.matmul)详悉

1.问题由来

在tensorflow框架下,经常会用到矩阵的乘法运算,特别是高(多)维的矩阵运算,在这些矩阵运算时,经常使用到其中的tf.matmul或tf.linalg.matmul等函数。但高维矩阵在内部怎么运算的?其内部的参数是怎么实现的在tensorflow给出的介绍仍然存在表达不明的问题,所以在此作进一步的阐释。

声明:本博客里的数组乘法运算是指矩阵乘法运算 ,不是对应元素相乘。所述高维代表矩阵的维度3维。

2.高维矩阵的乘法运算规则

2.1 运算条件

两矩阵的维数相同:

个维度都一致:

最后两个维度满足矩阵乘法运算:

具体地,假设,则 能运算的条件如下图(箭头表示相等):

2.2 使用tf.matmul(tf.linalg.matmul)时存在的问题

按照上文的规则使用tf.matmul(tf.linalg.matmul)时,又会存在各种问题。以tf.linalg.matmul为例,其关键参数设置如下,表征2个高维矩阵,transpose_a和transpose_b可以理解为分别对这2个矩阵的转置操作。我们假设都是4维矩阵,并设维度分别为。tensorflow中,第1维一般是batchsize。那么,tf.linalg.matmul(a,b,transpose_b=True)是不是对矩阵的真正转置呢?即tf.linalg.matmul(a,b,transpose_b=True)是维度维的矩阵与维度为的矩阵直接的矩阵运算呢?

python 复制代码
tf.linalg.matmul(
    a,
    b,
    transpose_a=False,
    transpose_b=False,
    adjoint_a=False,
    adjoint_b=False,
    a_is_sparse=False,
    b_is_sparse=False,
    output_type=None,
    grad_a=False,
    grad_b=False,
    name=None
)

如果我们直接看tensorflow给出的解释如下

直观的理解确实如前文所述,其实不然。

这里的transpose_a / transpose_b=True并不是执行传统数学意义上的转置操作,而是仅对高维矩阵上的最后两个维度的转置,其它维度仍保持不变。这是通过调用tf.linalg.matrix_transpose实现的。具体如下

python 复制代码
tf.linalg.matrix_transpose(
    a, name='matrix_transpose', conjugate=False
)

tensorflow文档中对其的描述如下,即转置矩阵的最后2个维度。

python 复制代码
Transposes last two dimensions of tensor a.

至于后续的运算可以在相关文档中查阅得到。

参考文档

tensorflow中高维数组乘法运算_高位矩阵乘法 tensorflow-CSDN博客

TensorFlow中矩阵乘操作tf.matmul(或tf.linalg.matmul)和矩阵元素乘tf.multiply(或tf.math.multiply)用法对比-CSDN博客

相关推荐
九州ip动态10 小时前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
phoenix@Capricornus10 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
willhu200813 小时前
Tensorflow2保存和加载模型
深度学习·机器学习·tensorflow
读心悦14 小时前
5000 字总结CSS 中的过渡、动画和变换详解
前端·css·tensorflow
北上ing1 天前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
摸鱼仙人~2 天前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
浊酒南街2 天前
TensorFlow之微分求导
人工智能·python·tensorflow
汉克老师2 天前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
田梓燊2 天前
数学复习笔记 14
笔记·线性代数·矩阵
云手机管家2 天前
CDN加速对云手机延迟的影响
运维·服务器·网络·容器·智能手机·矩阵·自动化