聊聊ChatGLM2-6B模型的微调

概述

GLM、ChatGLM的相关基础知识说明:

  1. GLM模型底层还是基于Transformer,因此其设计、优化都是围绕Transformer的各个组件的。从注意力层的掩码、位置编码等方面优化与设计。
  2. ChatGLM3/ChatGLM2的源码中,比如finetune、trainer等代码,其实是copy自HuggingFace,而且其使用流程与调用机制,与HuggingFace的开发流程是一致的。
  3. 对GLM-130B,ChatGLM千亿模型,ChatGLM-6B的区分不够清楚,这里给出说明:
    • GLM-130B:于2022年8月由清华智谱AI开源放出。该大语言模型基于之前提出的GLM(General Language Model),在Norm处理、激活函数、Mask机制等方面进行了调整,目的是训练出开源开放的高精度千亿中英双语稠密模型,能够让更多研发者用上千亿模型。
    • ChatGLM千亿模型: 该模型是为了解决大基座模型在复杂问题、动态知识、人类对齐场景的不足,基于GLM-130B,引入面向对话的用户反馈,进行指令微调后,得到的对话机器人。
    • ChatGLM-6B:于2023年3月开源。在进行ChatGLM千亿模型内测的同时,清华团队也开放出了同样技术小参数量的版本,方便研发者们进行学习和开发(非商用)。

ChatGLM对话模型的微调需要用到两个部分;一是已预训练的模型文件,二是ChatGLM的源码文件。

模型文件

Huggingface平台下载到本地或直接用远程的文件。

已预训练的模型,其开发调用模式遵循Huggingface的开发规范。

微调

在github上托管的ChatGLM源码包中,详细的介绍了基于p-tuning的微调策略

其源码模块中已经准备好了脚本文件 train.sh ,该文件包含所有相关的配置参数,根据微调后的配置调整脚本文件,一键运行即可。

微调并执行后,会保存并生成checkpoint-xxx文件。这就是新的权重超参数。

模型部署

有两种方式用来运行微调后的模型:

  1. 基于Huggingface的开发规范,将原模型超参数文件与微调后的超参数文件一起加载,并调用。
  2. 调整 web_demo.sh 文件中的路径配置,运行即可。

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

相关推荐
Brsentibi2 分钟前
深度学习—数据标注—label-studio
深度学习·数据标注·label-studio·yolo数据集自制
私域实战笔记13 分钟前
SCRM平台对比推荐:以企业微信私域运营需求为核心的参考
大数据·人工智能·企业微信·scrm·企业微信scrm
格林威17 分钟前
AOI在FPC制造领域的检测应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
机器学习之心29 分钟前
SSA-Transformer-LSTM麻雀搜索算法优化组合模型分类预测结合SHAP分析!优化深度组合模型可解释分析,Matlab代码
分类·lstm·transformer·麻雀搜索算法优化·ssa-transformer
utmhikari32 分钟前
【GitHub探索】代码开发AI辅助工具trae-agent
人工智能·ai·大模型·llm·github·agent·trae
IT_陈寒1 小时前
Python数据处理速度慢?5行代码让你的Pandas提速300% 🚀
前端·人工智能·后端
NewCarRen1 小时前
基于健康指标的自动驾驶全系统运行时安全分析方法
人工智能·安全·自动驾驶·预期功能安全
初心丨哈士奇1 小时前
前端Vibe Coding探索:Cursor+MCP打造沉浸式开发流(使用MCP与Cursor Rules让Vibe Coding更快速与精准)
前端·人工智能
艾莉丝努力练剑1 小时前
【Git:基本操作】深度解析Git:从初始Git到熟悉基本操作
大数据·linux·c++·人工智能·git·gitee·指令
机器之心1 小时前
上海AI Lab发布混合扩散语言模型SDAR:首个突破6600 tgs的开源扩散语言模型
人工智能·openai