【模型】timm库

1. timm库

timm 是一个用于深度学习的开源库,全称是 "PyTorch Image Models"。该库由 Ross Wightman 创建并维护,旨在提供高效且易于使用的图像模型,包括大量预训练的模型和实用工具。timm 库基于 PyTorch 框架,主要特点包括:

  1. 预训练模型:timm 提供了大量预训练的图像分类模型,这些模型在各种数据集上进行过训练,可以直接用于迁移学习或作为研究的基线模型。
  2. 高效的模型实现:timm 的模型实现注重效率和性能,适用于训练和推理任务。
  3. 易于使用的接口:timm 提供了简洁的 API,使用户可以方便地加载、训练和评估模型。
  4. 持续更新:timm 库不断更新,引入新的模型架构和技术,以跟上深度学习领域的最新进展。

下面是一个使用 timm 库加载预训练模型并进行推理的简单示例:

python 复制代码
import timm
import torch
from PIL import Image
from torchvision import transforms

# 加载预训练的 ResNet50 模型
model = timm.create_model('resnet50', pretrained=True)
model.eval()

# 图像预处理
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 加载并预处理图像
img = Image.open('path_to_your_image.jpg')
img_tensor = preprocess(img).unsqueeze(0)

# 推理
with torch.no_grad():
    output = model(img_tensor)

# 输出结果
print(output)

2. 预训练模型

timm(PyTorch Image Models)库包含了众多预训练的图像分类模型,这些模型在各种流行的数据集上进行了训练。以下是一些主要的预训练模型类别和具体模型名称:

主流模型架构

  1. ResNet 系列

    • ResNet-18
    • ResNet-34
    • ResNet-50
    • ResNet-101
    • ResNet-152
  2. EfficientNet 系列

    • EfficientNet-B0
    • EfficientNet-B1
    • EfficientNet-B2
    • EfficientNet-B3
    • EfficientNet-B4
    • EfficientNet-B5
    • EfficientNet-B6
    • EfficientNet-B7
  3. Vision Transformers (ViT)

    • ViT-Base
    • ViT-Large
    • ViT-Huge
  4. DeiT(Data-efficient Image Transformers)

    • DeiT-Tiny
    • DeiT-Small
    • DeiT-Base
  5. MobileNet 系列

    • MobileNetV2
    • MobileNetV3
  6. RegNet 系列

    • RegNetX-200MF
    • RegNetX-600MF
    • RegNetY-800MF

其他常见模型架构

  1. DenseNet 系列

    • DenseNet-121
    • DenseNet-169
    • DenseNet-201
    • DenseNet-264
  2. Inception 系列

    • InceptionV3
    • InceptionV4
    • Inception-ResNet-V2
  3. SENet 系列

    • SENet-154
    • SE-ResNet-50
    • SE-ResNet-101
  4. EfficientDet(用于目标检测)

    • EfficientDet-D0
    • EfficientDet-D1
    • EfficientDet-D2
    • EfficientDet-D3
    • EfficientDet-D4
    • EfficientDet-D5
    • EfficientDet-D6
    • EfficientDet-D7

最新和高性能模型

  1. NFNet 系列

    • NFNet-F0
    • NFNet-F1
    • NFNet-F2
    • NFNet-F3
    • NFNet-F4
    • NFNet-F5
    • NFNet-F6
  2. ConvNeXt 系列

    • ConvNeXt-Tiny
    • ConvNeXt-Small
    • ConvNeXt-Base
    • ConvNeXt-Large
  3. Swin Transformer

    • Swin-Tiny
    • Swin-Small
    • Swin-Base
    • Swin-Large
  4. CaiT(Class-Attention in Image Transformers)

    • CaiT-XXS
    • CaiT-XS
    • CaiT-S
    • CaiT-M
    • CaiT-L

使用方法

可以通过以下代码查看 timm 支持的所有预训练模型:

python 复制代码
import timm

# 列出所有可用的模型
model_names = timm.list_models(pretrained=True)
print(model_names)

这些预训练模型已经在ImageNet等大型数据集上进行了训练,因此在迁移学习任务中通常表现良好。选择适合你任务的模型架构,可以加快训练过程,并提高模型的性能。

相关推荐
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子6 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能6 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能5776 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h7 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切7 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
学电子她就能回来吗9 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_9 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
大模型玩家七七9 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
kkzhang10 小时前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习