数据挖掘可以挖掘什么类型的模式?

一、挖掘频繁模式、关联和相关性

频繁模式(frequent pettern)是在数据中频繁出现的模式。

频繁项集一般是指频繁的在事务数据集中一起出现的商品的集合。

频繁出现的子序列,如顾客倾向于先买相机,再买内存卡这样的模式就是一个(频繁)序列模式。

子结构可能涉及不同的机构模式,如图、数或格。如果一个子结构频繁出现,则可称为(频繁)结构模式。

挖掘频繁模式可以发现数据中有趣的关联和相关性。

关联规则可分为单维关联规则和多维关联规则。

二、用于预测分析的分类与回归

分类是找出描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象的类标号。

分类和回归是有监督的学习方法。数据集分为训练集和测试集。

分类是预测类别的标号。

回归是建立连续值函数模型,即用来预测难以获得的数据值或缺失的数据。

两种方法可以成为数值预测和类标号预测。

三、聚类分析

聚类分析是一种无监督的学习方法。

聚类的特点是最大化类簇间的距离、最小化类簇内样本的距离。

四、离群点分析

大部分数据挖掘方法都将离群点视为噪声或异常而丢弃。

但在欺诈检测等应用中,离群点的出现则很重要。


参考文献:数据挖掘:概念与技术(原书第三版)

相关推荐
边缘计算社区42 分钟前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊1 小时前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse1 小时前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao1 小时前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
海特伟业2 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR2 小时前
每周AI论文速递(250421-250425)
人工智能
追逐☞2 小时前
机器学习(10)——神经网络
人工智能·神经网络·机器学习
winner88812 小时前
对抗学习:机器学习里的 “零和博弈”,如何实现 “双赢”?
人工智能·机器学习·gan·对抗学习
Elastic 中国社区官方博客2 小时前
使用 LangGraph 和 Elasticsearch 构建强大的 RAG 工作流
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
娃娃略2 小时前
【AI模型学习】双流网络——更强大的网络设计
网络·人工智能·pytorch·python·神经网络·学习