数据挖掘可以挖掘什么类型的模式?

一、挖掘频繁模式、关联和相关性

频繁模式(frequent pettern)是在数据中频繁出现的模式。

频繁项集一般是指频繁的在事务数据集中一起出现的商品的集合。

频繁出现的子序列,如顾客倾向于先买相机,再买内存卡这样的模式就是一个(频繁)序列模式。

子结构可能涉及不同的机构模式,如图、数或格。如果一个子结构频繁出现,则可称为(频繁)结构模式。

挖掘频繁模式可以发现数据中有趣的关联和相关性。

关联规则可分为单维关联规则和多维关联规则。

二、用于预测分析的分类与回归

分类是找出描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象的类标号。

分类和回归是有监督的学习方法。数据集分为训练集和测试集。

分类是预测类别的标号。

回归是建立连续值函数模型,即用来预测难以获得的数据值或缺失的数据。

两种方法可以成为数值预测和类标号预测。

三、聚类分析

聚类分析是一种无监督的学习方法。

聚类的特点是最大化类簇间的距离、最小化类簇内样本的距离。

四、离群点分析

大部分数据挖掘方法都将离群点视为噪声或异常而丢弃。

但在欺诈检测等应用中,离群点的出现则很重要。


参考文献:数据挖掘:概念与技术(原书第三版)

相关推荐
微学AI35 分钟前
智能穿戴新标杆:SD NAND (贴片式SD卡)与 SOC 如何定义 AI 眼镜未来技术路径
人工智能·ai·sd
拾忆-eleven43 分钟前
NLP学习路线图(十五):TF-IDF(词频-逆文档频率)
人工智能·学习·自然语言处理·nlp
封奚泽优1 小时前
使用Python绘制节日祝福——以端午节和儿童节为例
人工智能·python·深度学习
全域智图1 小时前
元胞自动机(Cellular Automata, CA)
人工智能·算法·机器学习
富唯智能1 小时前
复合机器人:纠偏算法如何重塑工业精度与效率?
人工智能·工业机器人·智能机器人
s153351 小时前
3.RV1126-OPENCV 图像叠加
人工智能·opencv·计算机视觉
珂朵莉MM1 小时前
2022 RoboCom 世界机器人开发者大赛-本科组(省赛)解题报告 | 珂学家
人工智能·算法·职场和发展·深度优先·图论
Lilith的AI学习日记1 小时前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
仟濹2 小时前
「数据采集与网络爬虫(使用Python工具)」【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·爬虫·python·数据挖掘·数据分析
中杯可乐多加冰2 小时前
采用Bright Data+n8n+AI打造自动化新闻助手:每天5分钟实现内容日更
运维·人工智能·自动化·大模型·aigc·n8n