数据挖掘可以挖掘什么类型的模式?

一、挖掘频繁模式、关联和相关性

频繁模式(frequent pettern)是在数据中频繁出现的模式。

频繁项集一般是指频繁的在事务数据集中一起出现的商品的集合。

频繁出现的子序列,如顾客倾向于先买相机,再买内存卡这样的模式就是一个(频繁)序列模式。

子结构可能涉及不同的机构模式,如图、数或格。如果一个子结构频繁出现,则可称为(频繁)结构模式。

挖掘频繁模式可以发现数据中有趣的关联和相关性。

关联规则可分为单维关联规则和多维关联规则。

二、用于预测分析的分类与回归

分类是找出描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象的类标号。

分类和回归是有监督的学习方法。数据集分为训练集和测试集。

分类是预测类别的标号。

回归是建立连续值函数模型,即用来预测难以获得的数据值或缺失的数据。

两种方法可以成为数值预测和类标号预测。

三、聚类分析

聚类分析是一种无监督的学习方法。

聚类的特点是最大化类簇间的距离、最小化类簇内样本的距离。

四、离群点分析

大部分数据挖掘方法都将离群点视为噪声或异常而丢弃。

但在欺诈检测等应用中,离群点的出现则很重要。


参考文献:数据挖掘:概念与技术(原书第三版)

相关推荐
笑衬人心。15 分钟前
初学Spring AI 笔记
人工智能·笔记·spring
luofeiju25 分钟前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园27 分钟前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_31 分钟前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩32 分钟前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
Baihai_IDP1 小时前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁1 小时前
Pytorch torch
人工智能·pytorch·python
拓端研究室1 小时前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF1 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
Despacito0o1 小时前
ESP32-s3摄像头驱动开发实战:从零搭建实时图像显示系统
人工智能·驱动开发·嵌入式硬件·音视频·嵌入式实时数据库