数据挖掘可以挖掘什么类型的模式?

一、挖掘频繁模式、关联和相关性

频繁模式(frequent pettern)是在数据中频繁出现的模式。

频繁项集一般是指频繁的在事务数据集中一起出现的商品的集合。

频繁出现的子序列,如顾客倾向于先买相机,再买内存卡这样的模式就是一个(频繁)序列模式。

子结构可能涉及不同的机构模式,如图、数或格。如果一个子结构频繁出现,则可称为(频繁)结构模式。

挖掘频繁模式可以发现数据中有趣的关联和相关性。

关联规则可分为单维关联规则和多维关联规则。

二、用于预测分析的分类与回归

分类是找出描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象的类标号。

分类和回归是有监督的学习方法。数据集分为训练集和测试集。

分类是预测类别的标号。

回归是建立连续值函数模型,即用来预测难以获得的数据值或缺失的数据。

两种方法可以成为数值预测和类标号预测。

三、聚类分析

聚类分析是一种无监督的学习方法。

聚类的特点是最大化类簇间的距离、最小化类簇内样本的距离。

四、离群点分析

大部分数据挖掘方法都将离群点视为噪声或异常而丢弃。

但在欺诈检测等应用中,离群点的出现则很重要。


参考文献:数据挖掘:概念与技术(原书第三版)

相关推荐
拓端研究室1 天前
专题:2025AI产业全景洞察报告:企业应用、技术突破与市场机遇|附920+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
lumi.1 天前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
m0_650108241 天前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹1 天前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
AKAMAI1 天前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽1 天前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg50171 天前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z1 天前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
Curvatureflight1 天前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
6***x5451 天前
C在机器学习中的ML.NET应用
人工智能·机器学习