MATLAB多元函数梯度下降法找最小值-梯度演示-绘制梯度方向

如果海森矩阵 在所有可能的参数值上都是正定 的,则该函数是凸的;函数将呈现为光滑的碗状,使得训练过程相对简单。存在单 一的全局最小值,不会有局部最小值或鞍点

沿着梯度方向,函数变化最快。

x,y点的更新:x和y每次更新一点点,z根据公式可以计算出一个新的坐标点,但新的z不一定落在f(x,y)上,除非x,y的变化非常非常小。为了演示梯度的方向,我们将变化调大一些。

原理:

如果进行梯度下降,可以找到全局最优点。

程序:梯度下降版

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
   
    
    x1=[Init_x New_x];
    y1=[Init_y New_y];
    Z1=[z1 New_z];
    if(mod(i,10)==0)
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x,New_y,New_z,'b>')
    hold on;
    end
    Init_x=New_x;
    Init_y=New_y;
    
end

程序:显示梯度方向版

为了更好的让大家看每一次迭代的梯度方向,所以在这一版中绘制了梯度的方向。

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    %New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%梯度方向绘制
    if(mod(i,10)==0)
    New_x1=Init_x-3;
    New_y1=Init_y-3;
    New_z1=z1-3*dzy-3*dzx;
    x1=[Init_x New_x1];
    y1=[Init_y New_y1];
    Z1=[z1 New_z1];
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x1,New_y1,New_z1,'b>')
    hold on;
    end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    Init_x=New_x;
    Init_y=New_y;
    
end
相关推荐
池央1 小时前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年1 小时前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰1 小时前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn1 小时前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
taoqick3 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52353 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
预测模型的开发与应用研究4 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型4 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体
PowerBI学谦5 小时前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas
运维开发王义杰6 小时前
AI: Unsloth + Llama 3 微调实践,基于Colab
人工智能·llama