MATLAB多元函数梯度下降法找最小值-梯度演示-绘制梯度方向

如果海森矩阵 在所有可能的参数值上都是正定 的,则该函数是凸的;函数将呈现为光滑的碗状,使得训练过程相对简单。存在单 一的全局最小值,不会有局部最小值或鞍点

沿着梯度方向,函数变化最快。

x,y点的更新:x和y每次更新一点点,z根据公式可以计算出一个新的坐标点,但新的z不一定落在f(x,y)上,除非x,y的变化非常非常小。为了演示梯度的方向,我们将变化调大一些。

原理:

如果进行梯度下降,可以找到全局最优点。

程序:梯度下降版

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
   
    
    x1=[Init_x New_x];
    y1=[Init_y New_y];
    Z1=[z1 New_z];
    if(mod(i,10)==0)
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x,New_y,New_z,'b>')
    hold on;
    end
    Init_x=New_x;
    Init_y=New_y;
    
end

程序:显示梯度方向版

为了更好的让大家看每一次迭代的梯度方向,所以在这一版中绘制了梯度的方向。

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    %New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%梯度方向绘制
    if(mod(i,10)==0)
    New_x1=Init_x-3;
    New_y1=Init_y-3;
    New_z1=z1-3*dzy-3*dzx;
    x1=[Init_x New_x1];
    y1=[Init_y New_y1];
    Z1=[z1 New_z1];
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x1,New_y1,New_z1,'b>')
    hold on;
    end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    Init_x=New_x;
    Init_y=New_y;
    
end
相关推荐
yiersansiwu123d17 分钟前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心36 分钟前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
爱好读书1 小时前
AI生成er图/SQL生成er图在线工具
人工智能
CNRio1 小时前
智能影像:AI视频生成技术的战略布局与产业变革
人工智能
六行神算API-天璇1 小时前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar
搞科研的小刘选手1 小时前
【ISSN/ISBN双刊号】第三届电力电子与人工智能国际学术会议(PEAI 2026)
图像处理·人工智能·算法·电力电子·学术会议
wumingxiaoyao1 小时前
AI - 使用 Google ADK 创建你的第一个 AI Agent
人工智能·ai·ai agent·google adk
拉姆哥的小屋1 小时前
从混沌到秩序:条件扩散模型在图像转换中的哲学与技术革命
人工智能·算法·机器学习
Sammyyyyy2 小时前
DeepSeek v3.2 正式发布,对标 GPT-5
开发语言·人工智能·gpt·算法·servbay
JoannaJuanCV2 小时前
自动驾驶—CARLA仿真(6)vehicle_gallery demo
人工智能·机器学习·自动驾驶·carla