MATLAB多元函数梯度下降法找最小值-梯度演示-绘制梯度方向

如果海森矩阵 在所有可能的参数值上都是正定 的,则该函数是凸的;函数将呈现为光滑的碗状,使得训练过程相对简单。存在单 一的全局最小值,不会有局部最小值或鞍点

沿着梯度方向,函数变化最快。

x,y点的更新:x和y每次更新一点点,z根据公式可以计算出一个新的坐标点,但新的z不一定落在f(x,y)上,除非x,y的变化非常非常小。为了演示梯度的方向,我们将变化调大一些。

原理:

如果进行梯度下降,可以找到全局最优点。

程序:梯度下降版

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
   
    
    x1=[Init_x New_x];
    y1=[Init_y New_y];
    Z1=[z1 New_z];
    if(mod(i,10)==0)
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x,New_y,New_z,'b>')
    hold on;
    end
    Init_x=New_x;
    Init_y=New_y;
    
end

程序:显示梯度方向版

为了更好的让大家看每一次迭代的梯度方向,所以在这一版中绘制了梯度的方向。

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    %New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%梯度方向绘制
    if(mod(i,10)==0)
    New_x1=Init_x-3;
    New_y1=Init_y-3;
    New_z1=z1-3*dzy-3*dzx;
    x1=[Init_x New_x1];
    y1=[Init_y New_y1];
    Z1=[z1 New_z1];
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x1,New_y1,New_z1,'b>')
    hold on;
    end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    Init_x=New_x;
    Init_y=New_y;
    
end
相关推荐
NAGNIP9 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP9 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴10 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维10 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者11 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai11 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃11 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb11 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU11 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习
Blossom.11812 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算