MATLAB多元函数梯度下降法找最小值-梯度演示-绘制梯度方向

如果海森矩阵 在所有可能的参数值上都是正定 的,则该函数是凸的;函数将呈现为光滑的碗状,使得训练过程相对简单。存在单 一的全局最小值,不会有局部最小值或鞍点

沿着梯度方向,函数变化最快。

x,y点的更新:x和y每次更新一点点,z根据公式可以计算出一个新的坐标点,但新的z不一定落在f(x,y)上,除非x,y的变化非常非常小。为了演示梯度的方向,我们将变化调大一些。

原理:

如果进行梯度下降,可以找到全局最优点。

程序:梯度下降版

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
   
    
    x1=[Init_x New_x];
    y1=[Init_y New_y];
    Z1=[z1 New_z];
    if(mod(i,10)==0)
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x,New_y,New_z,'b>')
    hold on;
    end
    Init_x=New_x;
    Init_y=New_y;
    
end

程序:显示梯度方向版

为了更好的让大家看每一次迭代的梯度方向,所以在这一版中绘制了梯度的方向。

Matlab 复制代码
clear;
syms x y;
z= x^2+y^2; % 定义函数
u=linspace(-10,10,100);
v=linspace(-10,10,100);
[U,V]=meshgrid(u,v);
z_value = subs(z, {x, y}, {U, V}); 
plot3(U,V,z_value,'g')
xlabel('X')
ylabel('Y')
zlabel('Z')
hold on;
dz_dx=diff(z,x);
dz_dy=diff(z,y);
learning=0.01;
epoch = 200;
Init_x=10;
Init_y=10;
for i=1:epoch
    dzx=subs(dz_dx,{x,y},{Init_x,Init_y});
    dzy=subs(dz_dy,{x,y},{Init_x,Init_y});
    z1=subs(z, {x, y}, {Init_x,Init_y});
    New_x=Init_x-learning*dzx;
    New_y=Init_y-learning*dzy;
    %New_z=z1-learning*dzy-learning*dzx;%绘制箭头使用
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%梯度方向绘制
    if(mod(i,10)==0)
    New_x1=Init_x-3;
    New_y1=Init_y-3;
    New_z1=z1-3*dzy-3*dzx;
    x1=[Init_x New_x1];
    y1=[Init_y New_y1];
    Z1=[z1 New_z1];
    plot3(x1,y1,Z1,'r-')
    scatter3(New_x1,New_y1,New_z1,'b>')
    hold on;
    end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    Init_x=New_x;
    Init_y=New_y;
    
end
相关推荐
charley.layabox4 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人5 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝7 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z7 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟7 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊7 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli77 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
千宇宙航8 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十课——图像gamma矫正的FPGA实现
图像处理·计算机视觉·缓存·fpga开发
潘达斯奈基~8 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc
倔强青铜三9 小时前
苦练Python第18天:Python异常处理锦囊
人工智能·python·面试