矩阵,求矩阵秩、逆矩阵

求矩阵秩的方法:

  1. 高斯消元法:通过行变换将矩阵化为行阶梯形矩阵,然后数非零行的数量。
  2. LU分解:通过分解矩阵成上下三角矩阵,计算非零对角元素的数量。
  3. SVD分解:通过奇异值分解,计算非零奇异值的数量。
  4. 行列式法:检查所有可能的子矩阵行列式,寻找最大的非零子矩阵。

求逆矩阵的方法:

  1. 高斯-约当消去法(Gauss-Jordan Elimination) :将增广矩阵 [ A ∣ I ] [A | I] [A∣I]化为 [ I ∣ A − 1 ] [I | A^{-1}] [I∣A−1]。
  2. 伴随矩阵法(Adjugate Matrix Method):通过计算伴随矩阵和行列式求逆矩阵。
  3. LU分解:通过上下三角矩阵分解求逆矩阵。
  4. SVD分解:通过奇异值分解求逆矩阵。
  5. Cholesky分解:适用于正定矩阵,通过分解求逆矩阵。

这些方法各有其优点和适用场景,根据具体问题选择合适的方法。

用高斯消元法求三阶矩阵的秩

假设我们有矩阵 A A A:
A = ( 1 2 3 2 4 6 1 1 1 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix} A= 121241361

步骤:

  1. 用第二行减去第一行的2倍:
    A ′ = ( 1 2 3 0 0 0 1 1 1 ) A' = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} A′= 101201301

  2. 用第三行减去第一行:
    A ′ ′ = ( 1 2 3 0 0 0 0 − 1 − 2 ) A'' = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & -1 & -2 \end{pmatrix} A′′= 10020−130−2

此时行阶梯形矩阵中有2个非零行,因此矩阵 A A A的秩为2。

用行列式法求三阶矩阵的秩

假设我们有同样的矩阵 A A A:
A = ( 1 2 3 2 4 6 1 1 1 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix} A= 121241361

步骤:

  1. 计算 3 × 3 3 \times 3 3×3矩阵的行列式:
    det ( A ) = 1 ∣ 4 6 1 1 ∣ − 2 ∣ 2 6 1 1 ∣ + 3 ∣ 2 4 1 1 ∣ \text{det}(A) = 1 \begin{vmatrix} 4 & 6 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 6 \\ 1 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} det(A)=1 4161 −2 2161 +3 2141
    det ( A ) = 1 ( 4 ⋅ 1 − 6 ⋅ 1 ) − 2 ( 2 ⋅ 1 − 6 ⋅ 1 ) + 3 ( 2 ⋅ 1 − 4 ⋅ 1 ) \text{det}(A) = 1 (4 \cdot 1 - 6 \cdot 1) - 2 (2 \cdot 1 - 6 \cdot 1) + 3 (2 \cdot 1 - 4 \cdot 1) det(A)=1(4⋅1−6⋅1)−2(2⋅1−6⋅1)+3(2⋅1−4⋅1)
    det ( A ) = 1 ( − 2 ) − 2 ( − 4 ) + 3 ( − 2 ) \text{det}(A) = 1 (-2) - 2 (-4) + 3 (-2) det(A)=1(−2)−2(−4)+3(−2)
    det ( A ) = − 2 + 8 − 6 = 0 \text{det}(A) = -2 + 8 - 6 = 0 det(A)=−2+8−6=0

  2. 行列式为0,表示矩阵 A A A的秩小于3。我们需要检查所有 2 × 2 2 \times 2 2×2子矩阵:

∣ 1 2 2 4 ∣ = 1 ⋅ 4 − 2 ⋅ 2 = 0 \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 2 = 0 1224 =1⋅4−2⋅2=0
∣ 1 3 1 1 ∣ = 1 ⋅ 1 − 3 ⋅ 1 = − 2 \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 1 = -2 1131 =1⋅1−3⋅1=−2
∣ 2 3 4 6 ∣ = 2 ⋅ 6 − 3 ⋅ 4 = 0 \begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix} = 2 \cdot 6 - 3 \cdot 4 = 0 2436 =2⋅6−3⋅4=0

找到一个非零子矩阵,表示矩阵的秩为2。

用增广矩阵法求三阶矩阵的逆矩阵

假设我们有矩阵 B B B:
B = ( 2 − 1 0 − 1 2 − 1 0 − 1 2 ) B = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} B= 2−10−12−10−12

步骤:

  1. 构建增广矩阵 [ B ∣ I ] [B | I] [B∣I]:
    ( 2 − 1 0 ∣ 1 0 0 − 1 2 − 1 ∣ 0 1 0 0 − 1 2 ∣ 0 0 1 ) \begin{pmatrix} 2 & -1 & 0 & | & 1 & 0 & 0 \\ -1 & 2 & -1 & | & 0 & 1 & 0 \\ 0 & -1 & 2 & | & 0 & 0 & 1 \end{pmatrix} 2−10−12−10−12∣∣∣100010001

  2. 通过高斯-约当消去法将其化为 [ I ∣ B − 1 ] [I | B^{-1}] [I∣B−1]:
    ( 1 0 0 ∣ 3 4 1 2 1 4 0 1 0 ∣ 1 2 1 1 2 0 0 1 ∣ 1 4 1 2 3 4 ) \begin{pmatrix} 1 & 0 & 0 & | & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 & | & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{pmatrix} 100010001∣∣∣43214121121412143

得到矩阵 B B B的逆矩阵为:
B − 1 = ( 3 4 1 2 1 4 1 2 1 1 2 1 4 1 2 3 4 ) B^{-1} = \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{pmatrix} B−1= 43214121121412143

用伴随矩阵法求三阶矩阵的逆矩阵

假设我们有同样的矩阵 B B B:
B = ( 2 − 1 0 − 1 2 − 1 0 − 1 2 ) B = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} B= 2−10−12−10−12

步骤:

  1. 计算矩阵的行列式:
    det ( B ) = 2 ∣ 2 − 1 − 1 2 ∣ − ( − 1 ) ∣ − 1 − 1 0 2 ∣ + 0 \text{det}(B) = 2 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} -1 & -1 \\ 0 & 2 \end{vmatrix} + 0 det(B)=2 2−1−12 −(−1) −10−12 +0
    det ( B ) = 2 ( 4 − 1 ) − ( − 1 ) ( − 2 ) \text{det}(B) = 2 (4 - 1) - (-1)(-2) det(B)=2(4−1)−(−1)(−2)
    det ( B ) = 2 ⋅ 3 − 2 = 4 \text{det}(B) = 2 \cdot 3 - 2 = 4 det(B)=2⋅3−2=4

  2. 计算伴随矩阵(Cofactor Matrix的转置):
    adj ( B ) = ( ∣ 2 − 1 − 1 2 ∣ − ∣ − 1 − 1 − 1 2 ∣ ∣ − 1 2 − 1 2 ∣ − ∣ − 1 0 − 1 2 ∣ ∣ 2 0 0 2 ∣ − ∣ 2 − 1 0 − 1 ∣ ∣ − 1 0 2 − 1 ∣ − ∣ 2 − 1 − 1 − 1 ∣ ∣ 2 − 1 − 1 2 ∣ ) \text{adj}(B) = \begin{pmatrix} \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} & -\begin{vmatrix} -1 & -1 \\ -1 & 2 \end{vmatrix} & \begin{vmatrix} -1 & 2 \\ -1 & 2 \end{vmatrix} \\ -\begin{vmatrix} -1 & 0 \\ -1 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} & -\begin{vmatrix} 2 & -1 \\ 0 & -1 \end{vmatrix} \\ \begin{vmatrix} -1 & 0 \\ 2 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & -1 \\ -1 & -1 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} \end{pmatrix} adj(B)= 2−1−12 − −1−102 −120−1 − −1−1−12 2002 − 2−1−1−1 −1−122 − 20−1−1 2−1−12

  3. 计算每个代数余子式:
    ∣ 2 − 1 − 1 2 ∣ = 4 − 1 = 3 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 4 - 1 = 3 2−1−12 =4−1=3
    − ∣ − 1 − 1 − 1 2 ∣ = − ( − 1 ( 2 ) − ( − 1 ) ( − 1 ) ) = − ( − 2 − 1 ) = 3 -\begin{vmatrix} -1 & -1 \\ -1 & 2 \end{vmatrix} = -(-1(2) - (-1)(-1)) = -(-2 - 1) = 3 − −1−1−12 =−(−1(2)−(−1)(−1))=−(−2−1)=3
    ∣ − 1 2 − 1 2 ∣ = − 1 ( 2 ) − 2 ( − 1 ) = − 2 + 2 = 0 \begin{vmatrix} -1 & 2 \\ -1 & 2 \end{vmatrix} = -1(2) - 2(-1) = -2 + 2 = 0 −1−122 =−1(2)−2(−1)=−2+2=0
    − ∣ − 1 0 − 1 2 ∣ = − ( − 1 ( 2 ) − 0 ( − 1 ) ) = − ( − 2 ) = 2 -\begin{vmatrix} -1 & 0 \\ -1 & 2 \end{vmatrix} = -(-1(2) - 0(-1)) = -(-2) = 2 − −1−102 =−(−1(2)−0(−1))=−(−2)=2
    ∣ 2 0 0 2 ∣ = 4 \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 2002 =4
    − ∣ 2 − 1 0 − 1 ∣ = − ( 2 ( − 1 ) − 0 ) = 2 -\begin{vmatrix} 2 & -1 \\ 0 & -1 \end{vmatrix} = -(2(-1) - 0) = 2 − 20−1−1 =−(2(−1)−0)=2
    ∣ − 1 0 2 − 1 ∣ = ( − 1 ) ( − 1 ) − 0 = 1 \begin{vmatrix} -1 & 0 \\ 2 & -1 \end{vmatrix} = (-1)(-1) - 0 = 1 −120−1 =(−1)(−1)−0=1
    − ∣ 2 − 1 − 1 − 1 ∣ = − ( − 2 + 1 ) = 1 -\begin{vmatrix} 2 & -1 \\ -1 & -1 \end{vmatrix} = -(-2 + 1) = 1 − 2−1−1−1 =−(−2+1)=1
    ∣ 2 − 1 − 1 2 ∣ = 4 − 1 = 3 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 4 - 1 = 3 2−1−12 =4−1=3

  4. 转置得到伴随矩阵:
    adj ( B ) = ( 3 2 1 3 4 1 0 2 3 ) \text{adj}(B) = \begin{pmatrix} 3 & 2 & 1 \\ 3 & 4 & 1 \\ 0 & 2 & 3 \end{pmatrix} adj(B)= 330242113

  5. 计算逆矩阵:

B − 1 = 1 det ( B ) adj ( B ) = 1 4 ( 3 2 1 3 4 1 0 2 3 ) = ( 3 4 1 2 1 4 3 4 1 1 4 0 1 2 3 4 ) B^{-1} = \frac{1}{\text{det}(B)} \text{adj}(B) = \frac{1}{4} \begin {pmatrix} 3 & 2 & 1 \\ 3 & 4 & 1 \\ 0 & 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{3}{4} & 1 & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{3}{4} \end{pmatrix} B−1=det(B)1adj(B)=41 330242113 = 4343021121414143

通过这些简单的例子和步骤,可以清楚地了解如何用高斯消元法、行列式法求矩阵秩,以及用增广矩阵和伴随矩阵法求逆矩阵。

相关推荐
Xの哲學1 分钟前
Linux网卡注册流程深度解析: 从硬件探测到网络栈
linux·服务器·网络·算法·边缘计算
bubiyoushang8885 分钟前
二维地质模型的表面重力值和重力异常计算
算法
仙俊红32 分钟前
LeetCode322零钱兑换
算法
颖风船34 分钟前
锂电池SOC估计的一种算法(改进无迹卡尔曼滤波)
python·算法·信号处理
551只玄猫1 小时前
KNN算法基础 机器学习基础1 python人工智能
人工智能·python·算法·机器学习·机器学习算法·knn·knn算法
charliejohn1 小时前
计算机考研 408 数据结构 哈夫曼
数据结构·考研·算法
POLITE31 小时前
Leetcode 41.缺失的第一个正数 JavaScript (Day 7)
javascript·算法·leetcode
CodeAmaz1 小时前
一致性哈希与Redis哈希槽详解
redis·算法·哈希算法
POLITE32 小时前
Leetcode 42.接雨水 JavaScript (Day 3)
javascript·算法·leetcode