24/8/4算法笔记 线性回归

在简单或多元线性回归中,最小二乘法用来估计模型参数,使得预测值与实际值之间的差异(残差)的平方和最小。

最小二乘法

导入代码包

复制代码
import numpy as np

X=np.array([[1,1],[2,1]])
X

构建矩阵

复制代码
y=np.array([14,10])
y

linalg是线性代数,用于求解线性方程组 Ax=b,solve计算线性代数回归问题

复制代码
np.linalg.solve(X,y)

转置

复制代码
X.T

矩阵乘法

复制代码
a=X.T.dot(X)

逆矩阵(inv)

复制代码
#逆矩阵
B=np.linalg.inv(a)
B

导入线性回归函数

复制代码
from sklearn.linear_model import LinearRegression

#LinearRegression 是一个常用的线性回归模型,用于预测连续的输出值。
model = LinearRegression(fit_intercept=False)#False,不计算斜率,没有使用正规方程

#X数据,y目标值
display(X,y)
model.fit(X,y)#这行代码用于训练模型。
model.coef_#结果,返回值#系数,斜率

获得截距项

复制代码
model.intercept_#表示截距项

带截距的线性方程

复制代码
y=y+12
y
复制代码
# 假设 X 是已经存在的一个 NumPy 数组,这里我们创建一个示例 X 来模拟
X = np.array([[1, 2], [3, 4]])

# 使用 np.full 创建一个形状为 (2, 1),填充值为 1 的数组,确保行数与 X 匹配
ones_array = np.full((X.shape[0], 1), fill_value=1)

# 使用 np.concatenate 在 X 的每行末尾添加 ones_array
X = np.concatenate([X, ones_array], axis=1)

# 假设 display 函数和 y 变量已经定义
display(X, y)

正规方程计算

复制代码
import matplotlib.pyplot as plt
import numpy as np

X=np.linspace(0,10,num=30).reshape(-1,1)#np.linspace(0, 10, num=30) 
这个函数会生成一个包含 30 个元素的数组,这些元素在 0 到 10 之间均匀分布。linspace 函数的第一个参数是起始值,第二个参数是结束值,第三个参数 num 是生成的元素数量。

斜率和截距随机生成

复制代码
w = np.random.randint(1,5,size=1)
b = np.random.randint(1,10,size=1)

y=X*w+b+np.random.randn(30,1)

plt.scatter(X,y)#绘制散点图
相关推荐
焦耳加热20 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
wan5555cn27 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u6061 小时前
常用排序算法核心知识点梳理
算法·排序
雁于飞2 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
rannn_1112 小时前
【Javaweb学习|实训总结|Week1】html基础,CSS(选择器、常用样式、盒子模型、弹性盒布局、CSS定位、动画),js(基本类型、运算符典例)
css·笔记·学习·html
Ro Jace3 小时前
心灵笔记:第一性原理学习与实践
笔记
蒋星熠3 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油4 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream4 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL4 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法