24/8/4算法笔记 线性回归

在简单或多元线性回归中,最小二乘法用来估计模型参数,使得预测值与实际值之间的差异(残差)的平方和最小。

最小二乘法

导入代码包

复制代码
import numpy as np

X=np.array([[1,1],[2,1]])
X

构建矩阵

复制代码
y=np.array([14,10])
y

linalg是线性代数,用于求解线性方程组 Ax=b,solve计算线性代数回归问题

复制代码
np.linalg.solve(X,y)

转置

复制代码
X.T

矩阵乘法

复制代码
a=X.T.dot(X)

逆矩阵(inv)

复制代码
#逆矩阵
B=np.linalg.inv(a)
B

导入线性回归函数

复制代码
from sklearn.linear_model import LinearRegression

#LinearRegression 是一个常用的线性回归模型,用于预测连续的输出值。
model = LinearRegression(fit_intercept=False)#False,不计算斜率,没有使用正规方程

#X数据,y目标值
display(X,y)
model.fit(X,y)#这行代码用于训练模型。
model.coef_#结果,返回值#系数,斜率

获得截距项

复制代码
model.intercept_#表示截距项

带截距的线性方程

复制代码
y=y+12
y
复制代码
# 假设 X 是已经存在的一个 NumPy 数组,这里我们创建一个示例 X 来模拟
X = np.array([[1, 2], [3, 4]])

# 使用 np.full 创建一个形状为 (2, 1),填充值为 1 的数组,确保行数与 X 匹配
ones_array = np.full((X.shape[0], 1), fill_value=1)

# 使用 np.concatenate 在 X 的每行末尾添加 ones_array
X = np.concatenate([X, ones_array], axis=1)

# 假设 display 函数和 y 变量已经定义
display(X, y)

正规方程计算

复制代码
import matplotlib.pyplot as plt
import numpy as np

X=np.linspace(0,10,num=30).reshape(-1,1)#np.linspace(0, 10, num=30) 
这个函数会生成一个包含 30 个元素的数组,这些元素在 0 到 10 之间均匀分布。linspace 函数的第一个参数是起始值,第二个参数是结束值,第三个参数 num 是生成的元素数量。

斜率和截距随机生成

复制代码
w = np.random.randint(1,5,size=1)
b = np.random.randint(1,10,size=1)

y=X*w+b+np.random.randn(30,1)

plt.scatter(X,y)#绘制散点图
相关推荐
灯前目力虽非昔,犹课蝇头二万言。3 分钟前
HarmonyOS笔记12:生命周期
笔记·华为·harmonyos
yuhaiqun198910 分钟前
发现前端性能瓶颈的巧妙方法:建立“现象归因→分析定位→优化验证”的闭环思维
前端·经验分享·笔记·python·学习·课程设计·学习方法
谈笑也风生11 分钟前
经典算法题型之排序算法(四)
数据结构·算法·排序算法
AI科技星12 分钟前
空间螺旋电磁耦合常数 Z‘:拨开迷雾,让电磁力变得直观易懂
服务器·人工智能·科技·算法·生活
sz66cm14 分钟前
Linux基础 -- xargs 结合 `bash -lc` 参数传递映射规则笔记
linux·笔记·bash
d111111111d15 分钟前
使用STM32 HAL库配置ADC单次转换模式详解
笔记·stm32·单片机·嵌入式硬件·学习
亚伯拉罕·黄肯25 分钟前
强化学习算法笔记
笔记·算法
only-qi26 分钟前
LeetCode 148. 排序链表
算法·leetcode·链表
DYS_房东的猫29 分钟前
学习总结笔记三:让网站“活”起来——处理静态文件、表单验证与用户登录(第3章实战版)
笔记·学习·golang
岁岁的O泡奶29 分钟前
NSSCTF_crypto_[SWPUCTF 2023 秋季新生赛]dpdp
经验分享·python·算法·密码学