24/8/4算法笔记 线性回归

在简单或多元线性回归中,最小二乘法用来估计模型参数,使得预测值与实际值之间的差异(残差)的平方和最小。

最小二乘法

导入代码包

复制代码
import numpy as np

X=np.array([[1,1],[2,1]])
X

构建矩阵

复制代码
y=np.array([14,10])
y

linalg是线性代数,用于求解线性方程组 Ax=b,solve计算线性代数回归问题

复制代码
np.linalg.solve(X,y)

转置

复制代码
X.T

矩阵乘法

复制代码
a=X.T.dot(X)

逆矩阵(inv)

复制代码
#逆矩阵
B=np.linalg.inv(a)
B

导入线性回归函数

复制代码
from sklearn.linear_model import LinearRegression

#LinearRegression 是一个常用的线性回归模型,用于预测连续的输出值。
model = LinearRegression(fit_intercept=False)#False,不计算斜率,没有使用正规方程

#X数据,y目标值
display(X,y)
model.fit(X,y)#这行代码用于训练模型。
model.coef_#结果,返回值#系数,斜率

获得截距项

复制代码
model.intercept_#表示截距项

带截距的线性方程

复制代码
y=y+12
y
复制代码
# 假设 X 是已经存在的一个 NumPy 数组,这里我们创建一个示例 X 来模拟
X = np.array([[1, 2], [3, 4]])

# 使用 np.full 创建一个形状为 (2, 1),填充值为 1 的数组,确保行数与 X 匹配
ones_array = np.full((X.shape[0], 1), fill_value=1)

# 使用 np.concatenate 在 X 的每行末尾添加 ones_array
X = np.concatenate([X, ones_array], axis=1)

# 假设 display 函数和 y 变量已经定义
display(X, y)

正规方程计算

复制代码
import matplotlib.pyplot as plt
import numpy as np

X=np.linspace(0,10,num=30).reshape(-1,1)#np.linspace(0, 10, num=30) 
这个函数会生成一个包含 30 个元素的数组,这些元素在 0 到 10 之间均匀分布。linspace 函数的第一个参数是起始值,第二个参数是结束值,第三个参数 num 是生成的元素数量。

斜率和截距随机生成

复制代码
w = np.random.randint(1,5,size=1)
b = np.random.randint(1,10,size=1)

y=X*w+b+np.random.randn(30,1)

plt.scatter(X,y)#绘制散点图
相关推荐
阿豪只会阿巴19 分钟前
项目心得——发布者和订阅者问题解决思路
linux·开发语言·笔记·python·ubuntu·ros2
朔北之忘 Clancy27 分钟前
第二章 分支结构程序设计(3)
c++·算法·青少年编程·竞赛·教材·考级·讲义
Hello_Embed31 分钟前
RS485 双串口通信 + LCD 实时显示(中断版)
c语言·笔记·单片机·学习·操作系统·嵌入式
想逃离铁厂的老铁37 分钟前
Day42 >> 188、买卖股票的最佳时机IV + 309.最佳买卖股票时机含冷冻期 + 714.买卖股票的最佳时机含手续费
算法·leetcode·职场和发展
wu_asia38 分钟前
方阵对角线元素乘积计算
数据结构·算法
想逃离铁厂的老铁1 小时前
Day43 >> 300.最长递增子序列 + 674. 最长连续递增序列+ 718. 最长重复子数组
数据结构·算法
Yzzz-F1 小时前
P6648 [CCC 2019] Triangle: The Data Structure [st表]
算法
LateFrames1 小时前
泰勒级数:从 “单点” 到 “理论与实践的鸿沟”
学习·算法
武帝为此2 小时前
【RC4加密算法介绍】
网络·python·算法
宵时待雨2 小时前
数据结构(初阶)笔记归纳4:单链表的实现
c语言·开发语言·数据结构·笔记·算法