MHSSMamba:高光谱图像分类的多头空间光谱Mamba

Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification

2408.01224 (arxiv.org)

MHSSMamba提出了一种名为多头空间光谱Mamba的方法,用于高光谱图像分类。该方法通过增强光谱标记和应用多头自注意力机制来捕获复杂的光谱带与空间位置之间的关系,从而在高光谱图像分类任务中表现出色。相较于传统的Mamba模型,该方法不仅提升了计算效率并捕获了长距离依赖关系,还能处理HSI中丰富的光谱信息以及高维和序列数据。此外,MHSSMamba还保留了跨光谱带的上下文信息,并有效地管理长距离依赖关系和HSI数据的序列性。在帕维亚大学、休斯顿大学、萨利纳斯和武汉龙口数据集上进行实验验证时,MHSSMamba展现出优秀的分类准确率分别为97.62%、96.92%、96.85% 和 99.49%。

核心方法:Multi-Head Self-attention + Mamba

个人评价:感觉怪怪的,Mamba本身就是解决self-attention的问题,为什么要两个串联使用?

相关推荐
Baihai_IDP2 分钟前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·llm·aigc
12点一刻4 分钟前
搭建自动化工作流:探寻解放双手的有效方案(1)
运维·人工智能·自动化·deepseek
GoGeekBaird11 分钟前
使用GoHumanLoop拓展AI Agent人机协同边界,这次连接到飞书
人工智能·后端·github
liliangcsdn25 分钟前
在mac m1基于llama.cpp运行deepseek
人工智能·macos·语言模型·llama
Deng9452013141 小时前
基于数据挖掘的课程推荐系统研究
人工智能·数据挖掘·数据预处理·基于用户的协同过滤·文本特征提取
zhangfeng11331 小时前
机器学习 YOLOv5手绘电路图识别 手绘电路图自动转换为仿真软件(如LT Spice)可用的原理图,避免人工重绘
人工智能·yolo·机器学习
铭keny2 小时前
YOLO11 目标检测从安装到实战
人工智能·目标检测·目标跟踪
presenttttt2 小时前
用Python和OpenCV从零搭建一个完整的双目视觉系统(四)
开发语言·python·opencv·计算机视觉
杨小扩7 小时前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人