MHSSMamba:高光谱图像分类的多头空间光谱Mamba

Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification

2408.01224 (arxiv.org)

MHSSMamba提出了一种名为多头空间光谱Mamba的方法,用于高光谱图像分类。该方法通过增强光谱标记和应用多头自注意力机制来捕获复杂的光谱带与空间位置之间的关系,从而在高光谱图像分类任务中表现出色。相较于传统的Mamba模型,该方法不仅提升了计算效率并捕获了长距离依赖关系,还能处理HSI中丰富的光谱信息以及高维和序列数据。此外,MHSSMamba还保留了跨光谱带的上下文信息,并有效地管理长距离依赖关系和HSI数据的序列性。在帕维亚大学、休斯顿大学、萨利纳斯和武汉龙口数据集上进行实验验证时,MHSSMamba展现出优秀的分类准确率分别为97.62%、96.92%、96.85% 和 99.49%。

核心方法:Multi-Head Self-attention + Mamba

个人评价:感觉怪怪的,Mamba本身就是解决self-attention的问题,为什么要两个串联使用?

相关推荐
数据猿视觉6 小时前
新品上市|奢音S5耳夹耳机:3.5g无感佩戴,178.8元全场景适配
人工智能
蚁巡信息巡查系统6 小时前
网站信息发布再巡查机制怎么建立?
大数据·人工智能·数据挖掘·内容运营
AI浩6 小时前
C-RADIOv4(技术报告)
人工智能·目标检测
Purple Coder6 小时前
AI赋予超导材料预测论文初稿
人工智能
Data_Journal6 小时前
Scrapy vs. Crawlee —— 哪个更好?!
运维·人工智能·爬虫·媒体·社媒营销
云边云科技_云网融合6 小时前
AIoT智能物联网平台:架构解析与边缘应用新图景
大数据·网络·人工智能·安全
康康的AI博客6 小时前
什么是API中转服务商?如何低成本高稳定调用海量AI大模型?
人工智能·ai
技术与健康6 小时前
AI Coding协作开发工作台 实战案例:为电商系统添加用户评论功能
人工智能
在下胡三汉6 小时前
怎么在线编辑修改查看glb/gltf格式模型,支持多选,反选择多物体,单独导出物体(免费)
人工智能
小白狮ww6 小时前
Ovis-Image:卓越的图像生成模型
人工智能·深度学习·目标检测·机器学习·cpu·gpu·视觉分割模型