MHSSMamba:高光谱图像分类的多头空间光谱Mamba

Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification

2408.01224 (arxiv.org)

MHSSMamba提出了一种名为多头空间光谱Mamba的方法,用于高光谱图像分类。该方法通过增强光谱标记和应用多头自注意力机制来捕获复杂的光谱带与空间位置之间的关系,从而在高光谱图像分类任务中表现出色。相较于传统的Mamba模型,该方法不仅提升了计算效率并捕获了长距离依赖关系,还能处理HSI中丰富的光谱信息以及高维和序列数据。此外,MHSSMamba还保留了跨光谱带的上下文信息,并有效地管理长距离依赖关系和HSI数据的序列性。在帕维亚大学、休斯顿大学、萨利纳斯和武汉龙口数据集上进行实验验证时,MHSSMamba展现出优秀的分类准确率分别为97.62%、96.92%、96.85% 和 99.49%。

核心方法:Multi-Head Self-attention + Mamba

个人评价:感觉怪怪的,Mamba本身就是解决self-attention的问题,为什么要两个串联使用?

相关推荐
ChoSeitaku7 分钟前
高数强化NO6|极限的应用|连续的概念性质|间断点的定义分类|导数与微分
人工智能·算法·分类
xfchsjh11 分钟前
2025新时代想选优质数字科技企业展厅设计公司哪家好?深圳“潜力股”不容错过!
人工智能·科技·设计·艺术·展厅设计·展馆设计·科技展厅设计
plmm烟酒僧13 分钟前
OpenVINO 推理 YOLO Demo 分享 (Python)
图像处理·人工智能·python·yolo·openvino·runtime·推理
自然语14 分钟前
人工智能之数字生命-情绪
人工智能·算法
星云数灵15 分钟前
机器学习入门实战:使用Scikit-learn完成鸢尾花分类
人工智能·python·机器学习·ai·数据分析·pandas·python数据分析
新知图书16 分钟前
智能体开发环境安装
人工智能·ai agent·智能体·大模型应用开发·大模型应用
雨大王51219 分钟前
汽车产业链如何通过数字化平台实现研发协同升级
大数据·人工智能
冴羽26 分钟前
不知道怎么写 Nano Banana Pro 提示词?分享你一个结构化示例,复刻任意图片
前端·人工智能·aigc
新知图书26 分钟前
FastGPT企业知识库介绍
人工智能·ai agent·智能体·大模型应用开发·大模型应用