【机器学习】回归类算法-一元线性回归(入门)

一、概念

一元线性回归,指的是只研究一个自变量与一个因变量之间的关系。简单来说就是看如何设计出一条理想的直线(y=kx+b)。

二、如何确定一条理想的直线?

(1)最小二乘法

通过数学模型,拟合一条较为理想的直线。该直线可以使原数列的观测值与模型的估计值的离差平方和最小 (即所有点到该直线的垂直距离最短),而且原数列的观测值(y)与模型估计值(y1)的离差总和为0

我们可以从下面的,求解身高与体重之间的关系的例子中,来理解最小二乘法。

(2)如何求解最小二乘法

①公式的推导

下面的这张图片是老师给的,直接可以求y=b1x+b0公式中的b1与b0的公式 (大家可以下来查资料自行推导,数学好的推荐

②机器学习的工具SKlearn

from sklearn import linear_model

linear_model.LinearRegression()

三、案例实践

设计下列商品销售量与收入之间的一元线性回归方程:

代码:

python 复制代码
import numpy as np
from sklearn import linear_model

X = [522, 539, 577, 613, 644, 670, 695, 713, 741, 769, 801, 855, 842, 860, 890, 920]
Y = [6700, 7136, 7658, 7784, 8108, 7583, 8002, 8442, 8158, 8683, 9317, 9675, 8542, 8584, 9612, 9719]
# reshap改变数据的形状
x = np.array(X).reshape(-1, 1)
y = np.array(Y).reshape(-1, 1)
# LinearRegression()为linear_model中的线性回归方程,直接调用即可
lr = linear_model.LinearRegression()
# fit()调用模型函数
lr.fit(x, y)
# coef_和intercept_分别对应我们要求的一元回归函数里面的两个系数
print(lr.coef_)
print(lr.intercept_)

结果:

四、总结

博主也是初学者,有很多不懂的地方,如果有说错的地方,欢迎大家指正。最后,该内容是跟着**B站up主【abilityjh】**老师学习的,大家可以去看该老师的视频学习!

相关推荐
历程里程碑1 分钟前
子串-----和为 K 的子数组
java·数据结构·c++·python·算法·leetcode·tornado
一起养小猫2 分钟前
Flutter for OpenHarmony 进阶:表达式解析算法与计算器核心实现
算法·flutter·harmonyos
池央8 分钟前
贪心-最长递增子序列
算法·贪心算法
We་ct13 分钟前
LeetCode 383. 赎金信:解题思路+代码解析+优化实战
前端·算法·leetcode·typescript
小鸡吃米…18 分钟前
机器学习 - 贝叶斯定理
人工智能·python·机器学习
不懒不懒24 分钟前
【逻辑回归从原理到实战:正则化、参数调优与过拟合处理】
人工智能·算法·机器学习
一只大袋鼠24 分钟前
分布式 ID 生成:雪花算法原理、实现与 MyBatis-Plus 实战
分布式·算法·mybatis
tobias.b27 分钟前
408真题解析-2010-27-操作系统-同步互斥/Peterson算法
算法·计算机考研·408真题解析
寄存器漫游者36 分钟前
数据结构 二叉树核心概念与特性
数据结构·算法
m0_7066532339 分钟前
跨语言调用C++接口
开发语言·c++·算法