强化学习之Dueling DQN对DQN的改进——以倒立摆环境(Inverted Pendulum)为例

0.简介


参考博客来源:DeepRL系列(10): Dueling DQN(DDQN)原理及实现https://zhuanlan.zhihu.com/p/114834834
通过前面的推导,我们得到了Dueling Network的数学形式为

实际中将最大化形式变成均值形式效果更好,更稳定,其数学形式如下



1.导库

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import gym
import collections
import random

2.神经网络Qnet和VAnet构建

python 复制代码
class VAnet(torch.nn.Module):
    """ 只有一层隐藏层的A网络和V网络 """
    def __init__(self,statedim,hiddendim,actiondim):
        super(VAnet,self).__init__()
        self.fc1=torch.nn.Linear(statedim,hiddendim)
        self.fcA=torch.nn.Linear(hiddendim,actiondim)
        self.fcV=torch.nn.Linear(hiddendim,1)
    def forward(self,x):
        A=self.fcA(torch.nn.functional.relu(self.fc1(x)))
        V=self.fcV(torch.nn.functional.relu(self.fc1(x)))
        # Q=V+A-A.mean(1).unsqueeze(1)#unsqueeze 则用于在指定位置增加一个维度 本式子相当于下式
        Q=V+A-A.mean(1).view(-1,1)
        return Q
    def save(self, path):
        torch.save(self.state_dict(), path)
    def load(self, path):
        self.load_state_dict(torch.load(path))
class Qnet(torch.nn.Module):
    """ 只有一层隐藏层的Q网络 """
    def __init__(self,statedim,hiddendim,actiondim):
        super(Qnet,self).__init()
        self.fc1=torch.nn.Linear(statedim,hiddendim)
        self.fc2=torch.nn.Linear(hiddendim,actiondim)
    def forward(self,x):
        x=torch.nn.functional.relu(self.fc1(x))
        return self.fc2(x)
    def save(self, path):
        torch.save(self.state_dict(), path)
    def load(self, path):
        self.load_state_dict(torch.load(path))

3.经验回放池实现

python 复制代码
class ReplayBuffer:
    """ 经验回放池 """
    def __init__(self,capacity):
        self.buffer=collections.deque(maxlen=capacity)
    def add(self,state,action,reward,nextstate,done):
        self.buffer.append((state,action,reward,nextstate,done))
    def sample(self,batchsize):
        transitions=random.sample(self.buffer,batchsize)
        state,action,reward,nextstate,done=zip(*transitions)
        return np.array(state),action,reward,np.array(nextstate),done
    def size(self):
        return len(self.buffer)

当然我们神经网络也可以写成如下形式,是等价的。

python 复制代码
class VAnet(torch.nn.Module):
    def __init__(self, statedim, hiddendim, actiondim):
        super(VAnet, self).__init__()
        self.A = torch.nn.Sequential(
            torch.nn.Linear(statedim, hiddendim),
            torch.nn.ReLU(),
            torch.nn.Linear(hiddendim, actiondim),
            # torch.nn.Softmax(dim=1)
        )
        self.V = torch.nn.Sequential(
            torch.nn.Linear(statedim, hiddendim),
            torch.nn.ReLU(),
            torch.nn.Linear(hiddendim, 1)
        )

    def forward(self, x):
        a_output = self.A(x)
        v_output = self.V(x)
        a_mean = a_output.mean(1).view(-1, 1)
        return a_output + v_output - a_mean

4.离散动作转为连续函数的实现函数

python 复制代码
def dis_to_con(actionid,env,actiondim):#离散动作转回连续函数
    actionlowbound=env.action_space.low[0]#连续动作最小值
    actionupbound=env.action_space.high[0]#连续动作最大值
    return actionlowbound+actionid*(actionupbound-actionlowbound)/(actiondim-1)

5.DQN算法实现

python 复制代码
class DQN:
    """ DQN算法,包括DoubleDQN和DuelingDQN """
    def __init__(self,statedim,hiddendim,actiondim,learningrate,gamma,epsilon,targetupdate,device,dqntype='VanillaDQN'):
        self.actiondim=actiondim
        self.gamma=gamma
        self.epsilon=epsilon
        self.targetupdate=targetupdate
        self.device=device
        self.dqntype=dqntype
        self.count=0
        if self.dqntype=='DuelingDQN':#Dueling DQN采取不一样的网络框架
            self.qnet=VAnet(statedim=statedim,hiddendim=hiddendim,actiondim=actiondim).to(self.device)
            self.targetqnet=VAnet(statedim=statedim,hiddendim=hiddendim,actiondim=actiondim).to(self.device)
        else:
            self.qnet=Qnet(statedim=statedim,hiddendim=hiddendim,actiondim=actiondim).to(self.device)
            self.targetqnet=Qnet(statedim=statedim,hiddendim=hiddendim,actiondim=actiondim).to(self.device)
        self.optimizer=torch.optim.Adam(self.qnet.parameters(),lr=learningrate)
    def takeaction(self,state):
        if np.random.random()<self.epsilon:
            action=np.random.randint(self.actiondim)
        else:
            state=torch.tensor([state],dtype=torch.float).to(self.device)
            action=self.qnet(state).argmax().item()
        return action
    def max_qvalue(self,state):
        state=torch.tensor([state],dtype=torch.float).to(self.device)
        return self.qnet(state).max().item()
    def update(self,transition_dict):
        states=torch.tensor(transition_dict['states'],dtype=torch.float).to(self.device)
        actions=torch.tensor(transition_dict['actions']).view(-1,1).to(self.device)
        rewards=torch.tensor(transition_dict['rewards'],dtype=torch.float).view(-1,1).to(self.device)
        nextstates=torch.tensor(transition_dict['nextstates'],dtype=torch.float).to(self.device)
        dones=torch.tensor(transition_dict['dones'],dtype=torch.float).view(-1,1).to(self.device)
        qvalues=self.qnet(states).gather(1,actions)#gather(1, actions) 中的参数 1 表示沿着第 1 维度(即列维度)进行收集操作,根据 actions 提供的索引来收集相应的 qvalues 。
        if self.dqntype=='DoubleDQN':
            maxaction=self.qnet(nextstates).max(1)[1].view(-1,1)#max(1)表示在第 1 个维度(通常是列维度)上求最大值;max(1)会返回两个值,第一个是每行的最大值,第二个是最大值所在的索引[1]。
            maxnextqvalues=self.targetqnet(nextstates).gather(1,maxaction)
        else:
            maxnextqvalues=self.targetqnet(nextstates).max(1)[0].view(-1,1)
        targetqvalues=rewards+self.gamma*maxnextqvalues*(1-dones)
        dqnloss=torch.mean(torch.nn.functional.mse_loss(qvalues,targetqvalues))
        self.optimizer.zero_grad()
        dqnloss.backward()
        self.optimizer.step()
        if self.count % self.targetupdate==0:
            self.targetqnet.load_state_dict(self.qnet.state_dict())
        self.count+=1

6.训练DQN函数实现

python 复制代码
def trainDQN(agent,env,episodesnum,pbarnum,printreturnnum,replaybuffer,minimalsize,batchsize):
    returnlist=[]
    maxqvaluelist=[]
    maxqvalue=0
    for k in range(pbarnum):
        with tqdm(total=int(episodesnum/pbarnum),desc='Iteration %d'%k) as pbar:
            for episode in range(int(episodesnum/pbarnum)):
                episodereturn=0
                state=env.reset(seed=10)[0]
                done=False
                while not done:
                    action=agent.takeaction(state)
                    maxqvalue=agent.max_qvalue(state)*0.005+maxqvalue*0.995#平滑处理
                    maxqvaluelist.append(maxqvalue)#记录最大q值
                    action_continuous=dis_to_con(actionid=action,env=env,actiondim=agent.actiondim)
                    nextstate,reward,done,truncated,_=env.step([action_continuous])
                    done=done or truncated
                    replaybuffer.add(state,action,reward,nextstate,done)
                    state=nextstate
                    episodereturn+=reward
                    if replaybuffer.size()>minimalsize:
                        bs,ba,br,bns,bd=replaybuffer.sample(batchsize)
                        transitiondict={'states':bs,'actions':ba,'rewards':br,'nextstates':bns,'dones':bd}
                        agent.update(transitiondict)
                returnlist.append(episodereturn)
                if (episode+1)%printreturnnum==0:
                    pbar.set_postfix({'episode':'%d'%(int(episodesnum/pbarnum)*k+episode+1),'return':'%.3f'%np.mean(returnlist[-printreturnnum:])})
                pbar.update(1)
    return returnlist,maxqvaluelist

7.移动平均函数实现

python 复制代码
def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0)) 
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size-1, 2)
    begin = np.cumsum(a[:window_size-1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))

8.参数设置

python 复制代码
lr=1e-2
gamma=0.98
epsilon=0.01
target_update=10
batchsize=64
minimalsize=500
episodesnum=500
buffersize=10000
hiddendim=128
actiondim=11
pbarnum=10
printreturnnum=10
device=torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

9.倒立摆环境下训练并实现可视化

python 复制代码
random.seed(10)
np.random.seed(10)
torch.manual_seed(10)
replaybuffer=ReplayBuffer(buffersize)
env=gym.make('Pendulum-v1')
env.reset(seed=10)
statedim=env.observation_space.shape[0]
agent=DQN(statedim=statedim,hiddendim=hiddendim,actiondim=actiondim,learningrate=lr,gamma=gamma,epsilon=epsilon,targetupdate=target_update,device=device,dqntype='DuelingDQN')
returnlist,maxqvaluelist=trainDQN(agent=agent,env=env,episodesnum=episodesnum,pbarnum=pbarnum,printreturnnum=printreturnnum,replaybuffer=replaybuffer,minimalsize=minimalsize,batchsize=batchsize)

episodelist=np.arange(len(returnlist))#等价于np.linspace(0,len(returnlist)-1,len(returnlist))以及list(range(len(returnlist)))
plt.plot(episodelist,returnlist)
plt.xlabel('Episodes')
plt.ylabel('Return')
plt.title(f'{agent.dqntype} on {env.spec.name}')
plt.show()
framslist=np.arange(len(maxqvaluelist))
plt.plot(framslist,maxqvaluelist)
plt.axhline(y=0,color='purple',linestyle='--')
plt.axhline(y=10,c='red',ls='--')

plt.xlabel('Frames')
plt.ylabel('Q value')
plt.title(f'{agent.dqntype} on {env.spec.name}')
plt.show()
env.close()

9.可视化结果显示以及结论



结论:相比传统的DQN,Dueing DQN在多个动作选择下的学习更加稳定,得到的回报最大值也更大,由Dueling DQN 原理知随着动作空间增大,Dueling DQN相比DQN优势更加明显。本实验中离散动作数设置为11,可以增加动作数(例如15,25,30等),继续对比实验,实验效果更为明显。
当然我们可以改变网络结构,加大隐藏层数量, 更改神经网络结构如下所示。

python 复制代码
class VAnet(torch.nn.Module):
    def __init__(self, statedim, hiddendim, actiondim):
        super(VAnet, self).__init__()
        self.A = torch.nn.Sequential(
            torch.nn.Linear(statedim, hiddendim),
            torch.nn.Tanh(),  # 改变激活函数为 Tanh
            torch.nn.Linear(hiddendim, hiddendim),  # 增加一层隐藏层
            torch.nn.ReLU(),
            torch.nn.Linear(hiddendim, actiondim),
            # torch.nn.Softmax(dim=1)
        )
        self.V = torch.nn.Sequential(
            torch.nn.Linear(statedim, hiddendim),
            torch.nn.Tanh(),  # 改变激活函数为 Tanh
            torch.nn.Linear(hiddendim, hiddendim),  # 增加一层隐藏层
            torch.nn.ReLU(),
            torch.nn.Linear(hiddendim, 1)
        )
    def forward(self, x):
        return self.A(x) + self.V(x) - self.A(x).mean(1).view(-1, 1)
    def save(self, path):
        torch.save(self.state_dict(), path)
    def load(self, path):
        self.load_state_dict(torch.load(path))

结果如下所示:

相关推荐
卡比巴拉—林1 小时前
Python print()函数详讲
开发语言·python
在下赵某人1 小时前
概率数据结构的设计原理与误差分析
数据结构·算法·哈希算法
奶思图米球1 小时前
Python多环境管理
开发语言·python
Aerelin1 小时前
iframe讲解(爬虫playwright的特殊应用)
前端·爬虫·python·html
CoderYanger1 小时前
递归、搜索与回溯-综合练习:19.目标和
java·算法·leetcode·1024程序员节
mit6.8241 小时前
dfs|mask^翻转
算法
jimmyleeee1 小时前
人工智能基础知识笔记二十一:Function Calling
人工智能·笔记
量化Mike1 小时前
【python报错】解决卸载Python时报错问题:No Python installation was detected
开发语言·python
丝斯20111 小时前
AI学习笔记整理(21)—— AI核心技术(深度学习5)
人工智能·笔记·学习
SKYDROID云卓小助手2 小时前
三轴云台之控制协同技术
服务器·网络·图像处理·人工智能·算法