【亲测】MaxKB如何对接 Xinference 大模型

现在市面上关于基于 LLM 大模型的开源 AI 知识库有很多,比如,Dify、FastGPT、MaxKB等。其中,体验下来,觉得MaxKB整体页面使用起来比较流畅,简单易操作,不仅支持国内外主流的大模型对接,还支持流程编排,虽然目前还不支持函数库,但它的更新速度是很快的,1个月一个版本,从官网可知在8月底就会出函数库功能。如果有个性化需求调用的,可以期待一下。

好了,话不多说,开始正文。

一、MaxKB 是什么?

官网可知,MaxKB = Max Knowledge Base,是一款基于 LLM 大语言模型的开源知识库问答系统,旨在成为企业的最强大脑。

产品优势:

  • 开箱即用
    支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;
  • 无缝嵌入
    支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度;
  • 灵活编排
    内置强大的工作流引擎,支持编排 AI 工作流程,满足复杂业务场景下的需求;
  • 模型中立
    支持对接各种大语言模型,包括本地私有大模型(Llama 3 / Qwen 2 等)、国内公共大模型(通义千问 / 智谱 AI / 百度千帆 / Kimi / DeepSeek 等)和国外公共大模型(OpenAI / Azure OpenAI / Gemini 等)。

二、开始部署

查看官网文档,这里的部署方式也很简单,在这里不做过多的介绍了,如果不会的小伙伴可以去参考一下官网。
https://maxkb.cn/docs/installation/offline_installtion/

三、对接 Xinference 平台

3.1 在MaxKB找到模型设置

因为MakKB本身不支持Xinference平台接入,但提供了OpenAI的接入方式,恰好 Xinference 也是支持 OpenAI接口的,所以刚好也可以对接。

3.2 添加模型

点击"添加模型",这里参数注意。

API 域名:http://192.168.1.2:9997/v1/ (v1不能省略)

如果没有部署好xinference平台的,参考:如何部署xinference

填写完参数,点击"添加"按钮,即可添加成功。如果报错,检查网络或者所填写地址是否能否访问。

四、创建应用

添加好了模型,直接创建应用即可。

这里选择对应的模型即可使用。

五、总结

MaxKB作为国内开源私有化知识库搭建平台,有非常美观的操作页面和简单易懂的流程配置,还支持主流的模型对接,有着很大的潜力。

以上就是对接 Xinference 平台的操作步骤,欢迎讨论交流。

相关推荐
KG_LLM图谱增强大模型6 小时前
知识图谱的演进:从静态到动态、时序与事件的全景综述
人工智能·大模型·知识图谱
iFlow_AI6 小时前
使用iFlow CLI创建自定义Command:网页文章下载与翻译工具
前端·javascript·大模型·心流·iflow·iflowcli
精致先生6 小时前
Dify内网离线部署
大模型·dify
互联网开发者17 小时前
资深程序员白话干货AI工具技术
ai·大模型·ai大模型
core5121 天前
【深度硬核】大模型白盒蒸馏:原理、架构与实战详解
大模型·白盒蒸馏
xixixi777771 天前
AGI-Next前沿峰会——对于唐杰教授提到的AI下一步方向的“两条思路一次取舍”的思考(思路分析+通俗易懂解释)
人工智能·ai·大模型·agi·通用人工智能·asi
七牛云行业应用2 天前
重构实录:我删了 5 家大模型 SDK,只留了 OpenAI 标准库
python·系统架构·大模型·aigc·deepseek
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程
laplace01232 天前
claude code架构猜测总结
架构·大模型·llm·agent·rag
洛阳泰山2 天前
智能体项目MaxKB4J - 本地部署与开发完整指南
java·agent·工作流·rag·智能体·maxkb