【Spark集群部署系列一】Spark local模式介绍和搭建以及使用(内含Linux安装Anaconda)

简介

注意:

在部署spark集群前,请部署好Hadoop集群,jdk8【当然Hadoop集群需要运行在jdk上】,需要注意hadoop,spark的版本,考虑兼容问题。比如hadoop3.0以上的才兼容spark3.0以上的。

下面是Hadoop集群部署的链接,个人笔记,已经成功部署两次了,实时更新,分【一】【二】两部分,需要的自己看。不懂欢迎问,看到了解答。(链接失效的话请参考个人主页)

hadoop集群部署【一】HDFS集群http://t.csdnimg.cn/BVKlqhadoop集群部署【二】YARN,MapReduce集群http://t.csdnimg.cn/aJJt7

搭建准备工作:

需要python环境,上传Anaconda,找到放置的位置。

安装Anaconda

在node1(我的第一台机器名)安装Anaconda(我的是Anaconda3-2021.05-Linux-x86_64.sh 版本python3.8)

sh ./Anaconda3-2021.05-Linux-x86_64.sh

然后一直空格,出现[yes|no] 就回答yes,懂?

出现这样的就填你要把anaconda安装到哪里。(路径)

完成后结果(退出终端,重新进来)

更改conda国内源

vim ~/.condarc(新建的,一般里面没东西)

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

终端输入

python

创建spark运行的虚拟环境

conda create -n pyspark python=3.8
切换虚拟环境
conda activate pyspark

Spark Local部署

上传解压spark

(我的是 spark-3.2.0-bin-hadoop3.2.tgz)

通过什么工具不管,能上传就行。

找到spark上传的位置,cd 进到该目录,不进去也行,自己在前面加路径哈!解压。

 tar -zxvf spark-3.2.0-bin-hadoop3.2.tgz -C /export/server spark-3.2.0-bin-hadoop3.2/

-C 参数后跟解压到哪(路径)

cd /export/server    #填你自己解压的路径

建立软链接

 ln -s spark-3.2.0-bin-hadoop3.2/ spark

ll

配置环境变量

vim /etc/profile
export SPARK_HOME=/export/server/spark
export PYSPARK_PYTHON=/export/server/anaconda3/envs/pyspark/bin/python3.8
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
python 复制代码
:wq
python 复制代码
source /etc/profile
vim /root/.bashrc

添加

export JAVA_HOME=/export/server/jdk
export PYSPARK_PYTHON=/export/server/anaconda3/envs/pyspark/bin/python3.8

:wq

启动spark local模式

pyspark

进入spark的bin路径下

cd /export/server/spark/bin  # 注意路径

./pyspark

运行下面代码,结果参考上图

python 复制代码
sc.parallelize([1,2,3,4,5]).map(lambda x:x *10).collect()

可以通过游览器输入node1:4040查看监控页面(多个进程不会起冲突,具体监控页面的端口看上图spark版本下面第二行)

Ctrl+d退出

scala交互式界面
python 复制代码
./spark-shell

Ctrl+d退出

提交python文件(参考spark自带的案例文件pi.py 求圆周率,参数10 迭代十次)
python 复制代码
./spark-submit --master local[*] /export/server/spark/examples/src/main/python/pi.py 10

提交文件没有监控界面

相关推荐
先知demons1 小时前
【无标题】
笔记
烛.照1032 小时前
宝塔安装完redis 如何访问
linux·数据库·redis·缓存
优人ovo2 小时前
Kafka的消息协议
分布式·网络协议·kafka
未知陨落2 小时前
冯诺依曼系统及操作系统
linux·操作系统
纪伊路上盛名在2 小时前
ML基础-Jupyter notebook中的魔法命令
linux·服务器·人工智能·python·jupyter
躺不平的理查德2 小时前
Shell特殊位置变量以及常用内置变量总结
linux·运维·服务器
康王有点困2 小时前
(1)Linux高级命令简介
linux·运维·服务器
乙卯年QAQ3 小时前
【linux】linux缺少tar命令/-bash: tar:未找到命令
linux·运维·bash
乙卯年QAQ3 小时前
【Elasticsearch】Elasticsearch的查询
大数据·elasticsearch·搜索引擎
向上的车轮3 小时前
OpenEuler学习笔记(十四):在OpenEuler上搭建.NET运行环境
linux·笔记·学习·.net