大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Hadoop 集群启动
  • Spark 集群启动
  • h121 h122 h123 节点启动
  • 集群启动测试 SparkShell

什么是RDD

RDD是Spark的基石,是实现Spark数据处理的核心现象。

RDD是一个抽象类,它代表一个不可变、可分区、里面的元素可并行计算的集合。

RDD(Resilient Distributed Dataset)是Spark中的核心概念,它是一个容错、可以并行执行的分布式数据集。

它有如下的5个特征:

  • 一个分区的列表
  • 一个计算函数compute,对每个分区进行计算
  • 对其他RDDs的依赖(宽依赖、窄依赖)列表
  • 对Key-Value RDDs来说,存在一个分区器(Partitioner)【可选】
  • 对每个分区由一个优先位置的列表【可选】

RDD 特点介绍

不可变性(Immutability)

RDD一旦创建,就不能被修改。每次对RDD进行操作(例如过滤、映射等)都会产生一个新的RDD。这种不可变性简化了并行处理,因为无需担心多个计算节点间的数据竞争。

分布式(Distributed)

RDD的数据分布在多个节点上,这使得Spark能够处理大规模的数据集。RDD的每个分区都可以在不同的节点上独立处理。

容错性(Fault Tolerance)

RDD通过"血统"(Lineage)记录其生成方式。如果RDD的某些分区在计算过程中丢失,可以根据这些血统信息重新计算丢失的数据。通过这种方式,RDD能够在节点故障时自动恢复。

惰性求值(Lazy Evaluation)

RDD的操作被分为两类:转换操作(Transformations) 和 行动操作(Actions)。转换操作是惰性求值的,即不会立即执行,而是等到遇到行动操作时才触发计算。这样做的好处是可以通过合并多个转换操作来优化计算过程,减少不必要的中间计算。

类型安全(Type Safety)

在Scala语言中,RDD是类型安全的,意味着你可以在编译时捕获类型错误,这对开发者来说非常有帮助。

并行操作(Parallel Operation)

RDD的每个分区可以独立进行处理,允许多线程或多节点并行执行,充分利用集群的计算资源。

缓存与持久化(Caching and Persistence)

可以将RDD缓存或持久化到内存或磁盘中,以便在多次使用时避免重复计算,从而提高性能。

丰富的API

RDD提供了丰富的API支持各种操作,包括map、filter、reduceByKey、groupBy、join等,能够满足大部分分布式数据处理的需求。

RDD的特点

分区

RDD逻辑上是分区的,每个分区的数据是抽象存在的,计算的时候通过一个compute函数得到每个分区的数据。如果RDD是通过己有的文件系统构建,则compute函数是读取指定文件系统中的数据,如果RDD是通过其他RDD转换而来,则compute函数是执行转换逻辑将其他RDD的数据进行转换。

只读

RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD。

一个RDD转换为另一个RDD,通过丰富的算子(map filter union join reduceByKey等等)实现,不再像MR那样写Map和Reduce了。

RDD的操作算子包括两类:

  • Transformation:用来对RDD进行转化,延迟执行(Lazy)
  • Action:用来出发RDD的计算,得到相关计算结果或者将RDD保存的文件系统中

依赖

RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生出所必须得信息,RDDs之间维护着这种学院关系(lineage),也称为依赖。

  • 窄依赖:RDDs之间的分区是一一对应的(1对1 或者 n对1)
  • 宽依赖:子RDD每个分区与父RDD的每个分区都有关,是多对多的关系

缓存

可以控制存储级别(内存、磁盘等)来进行缓存

如果在应用程序中多次使用同一个RDD,可以将RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存取而不用再根据血缘计算,加速后期的重用。

CheckPoint

虽然RDD的血缘关系天然的可以实现容错,当RDD的某个分区失败或者丢失,可以通过血缘关系来进行重建。

但是对于长时间迭代型的应用来说,随着迭代的进行,RDDs之间的血缘关系会越来越长,一旦在后续迭代的过程中出错,则需要 通过非常长的血缘关系去重建,影响性能。

RDD支持CheckPoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为CheckPoint后的RDD不需要知道它的父RDDs了,可以直接从CheckPoint拿到数据。

Spark编程模型

  • RDD表示数据对象
  • 通过对象上的方法调用来对RDD进行转换
  • 最终显示结果或者将结果输出到外部数据源
  • RDD转换算子称为Transformation是Lazy的(延迟执行)
  • 只有遇到 Action算子,才会执行RDD的转换操作

如果要使用Spark,就需要编写Driver程序,它被提交到集群运行。

  • Driver中定义了一个或多个RDD,并调用RDD上的各种算子
  • Worker则执行RDD分区计算任务
相关推荐
弗拉唐6 分钟前
springBoot,mp,ssm整合案例
java·spring boot·mybatis
sun0077007 分钟前
ubuntu dpkg 删除安装包
运维·服务器·ubuntu
oi7738 分钟前
使用itextpdf进行pdf模版填充中文文本时部分字不显示问题
java·服务器
少说多做3431 小时前
Android 不同情况下使用 runOnUiThread
android·java
知兀1 小时前
Java的方法、基本和引用数据类型
java·笔记·黑马程序员
蓝黑20201 小时前
IntelliJ IDEA常用快捷键
java·ide·intellij-idea
Ysjt | 深1 小时前
C++多线程编程入门教程(优质版)
java·开发语言·jvm·c++
shuangrenlong2 小时前
slice介绍slice查看器
java·ubuntu