最新图像修复论文汇总(2024年以来)(三)

汇总了自2024年以来新提出的高质量图像修复工作,包含扩散模型、transformer、mamba、sam等最前沿的技术,其中一些是ICLR、ICML、CVPR、ECCV、ACM MM 2024年的新作。

这里是第三部分,还有两部分请参阅。

最新图像修复论文汇总(2024年以来)(一)-CSDN博客

最新图像修复论文汇总(2024年以来)(二)-CSDN博客

这篇博客先做简单汇总,后续我还会逐一阅读和学习,并逐一写详细的博客介绍。

目录

[Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration](#Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration)

[Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model](#Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model)

[Learning Diffusion Texture Priors for Image Restoration](#Learning Diffusion Texture Priors for Image Restoration)

[A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting](#A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting)

[BrushNet : A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion](#BrushNet : A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion)

[PowerPaint: A Versatile Image Inpainting Model](#PowerPaint: A Versatile Image Inpainting Model)

[Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model](#Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model)

[Plug-and-Play image restoration with Stochastic deNOising REgularization](#Plug-and-Play image restoration with Stochastic deNOising REgularization)

[ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement](#ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement)

[Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration](#Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration)

[A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting](#A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting)

[SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by Visual-Textual Contrastive Learning](#SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by Visual-Textual Contrastive Learning)


Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration

https://arxiv.org/pdf/2312.02918

Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model

GitHub - iSEE-Laboratory/DiffUIR: The official implementation of the paper of CVPR2024: Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model

CVPR2024

Learning Diffusion Texture Priors for Image Restoration

CVPR2024

A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting

https://arxiv.org/pdf/2312.03594

BrushNet : A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion

BrushNet Project

PowerPaint: A Versatile Image Inpainting Model

eccv 2024

https://github.com/open-mmlab/PowerPaint

Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model

Diffree Project

https://arxiv.org/pdf/2407.16982

Plug-and-Play image restoration with Stochastic deNOising REgularization

ICML 2024

GitHub - Marien-RENAUD/SNORE

https://arxiv.org/pdf/2402.01779

ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement

https://arxiv.org/pdf/2407.17705

Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration

https://arxiv.org/pdf/2407.03636

A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting

PowerPaint Project

GitHub

https://arxiv.org/pdf/2312.03594

SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by Visual-Textual Contrastive Learning

https://arxiv.org/pdf/2401.11847v1

相关推荐
Trent19854 小时前
影楼精修-智能修图Agent
图像处理·人工智能·计算机视觉·aigc
叶子爱分享15 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
加油吧zkf1 天前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
千宇宙航1 天前
闲庭信步使用SV搭建图像测试平台:第二十七课——图像的腐蚀
图像处理·计算机视觉·fpga开发
luofeiju1 天前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
昵称是6硬币2 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
云天徽上10 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
ZzzZ3141592612 天前
七天速成数字图像处理之七(颜色图像处理基础)
图像处理·人工智能·深度学习·计算机视觉·数学建模
夜松云13 天前
GoogLeNet:图像分类神经网络的深度剖析与实践
图像处理·人工智能·神经网络·分类·数据挖掘·卷积神经网络·分类算法
天天进步201513 天前
Python图像处理与计算机视觉:OpenCV实战指南
图像处理·python·计算机视觉