高效同步与处理:ADTF流服务在自动驾驶数采中的应用

目录

[一、ADTF 流服务](#一、ADTF 流服务)

[1、流服务源(Streaming Source)](#1、流服务源(Streaming Source))

[2、流服务汇(Streaming Sink)](#2、流服务汇(Streaming Sink))

二、数据链路

[1、数据管道(Data Pipe)](#1、数据管道(Data Pipe))

2、子流(Substreams)

[3、触发管道(Trigger Pipe)](#3、触发管道(Trigger Pipe))

三、总结


随着自动驾驶技术的发展,车辆的智能化程度不断提高,这体现了车辆感知,决策以及执行的能力。在算法开发和迭代过程中,提高测试和开发效率,关键在于多传感器数据的高质量采集,确保数据的同步性、完整性和一致性。

为了应对这一挑战,必须采取有效的数据整合策略。这包括开发处理不同数据速率和格式的组件,以及设计数据在时间上精确对齐的同步机制。进而创建一个统一的数据流形式,实时检测传感器的观测结果并进行落盘存储。

为了解决上述问题,ADTF 提供了一个强大的Streaming Service ,它专门针对自动驾驶多传感器数据采集的需求设计。ADTF Streaming Service以其高效的数据处理能力、灵活的架构设计和强大的同步机制,为自动驾驶数采系统提供了一个高质量的解决方案。

一、ADTF 流服务

在ADTF中,流服务(Streaming Services)扮演着至关重要的角色,它们定义了系统的入口点(Streaming Source)出口点(Streaming Sink)。具体来说,流服务既可以是数据管道的起点也可以是终点,它们通常用于处理来自硬件的样本数据和数据触发器。

1、流服务源(Streaming Source)

流服务源是样本和数据触发器进入系统的入口点。通常,任何设备链接都会作为流服务源来实现,组件如下图1所示:

图1:Streaming Source组件

Streaming Source支持以下的应用场景:

(1)从摄像头读取视频流

(2)从CAN总线设备读取CAN消息

(3)作为硬盘读取器提供基于文件的仿真数据

(4)通过网络或进程间连接接收来自分布式系统的样本,如ROS(机器人操作系统)或FEP(功能工程平台)

2、流服务汇(Streaming Sink)

流服务汇是样本和触发器离开系统的出口点。通常,任何设备链接都会作为流服务汇来实现。组件如下图2所示:

图2:Streaming Sink组件

Streaming Sink支持以下应用场景:

(1)向CAN总线设备写入原始CAN消息

(2)向设备写入FlexRay周期或汽车以太网PDU

(3)创建硬盘访问,用于基于文件的数据记录和高性能录制

二、数据链路

流服务是实现高效数据处理和传输的关键,通过Streaming Source和Streaming Sink,可以针对不同实际应用需求,搭建对应的数据链路,包括数据管道(Data Pipe)、子流(Substreams)以及触发管道(Trigger Pipe)。

1、数据管道(Data Pipe)

数据管道是连接样本写入器(Streaming Sink)和样本读取器(Streaming Source)的桥梁。在ADTF中,如图3所示,一个常见的数据管道从发送过滤器的样本写入器的输出引脚(Out Pin)开始,通过一个样本流(Sample Stream),到达一个或多个输入引脚(In Pins)及其对应的样本读取器。

图3:Data Pipe

2、子流(Substreams)

子流是减少过滤器图中引脚和连接复杂度的一种方法,如图4所示。通过使用子流,可以简化数据流的路径,提高系统的可读性和可维护性。

图4:子流

3、触发管道(Trigger Pipe)

触发管道是ADTF中基于触发路径的连接,通常从主动运行器(Active Timer Runner)开始,如图5所示,它触发连接的组件,类似于过滤器的运行器。

图5:触发管道

例如,在自动驾驶数据采集中,通过设计灵活的触发机制,数据管道可以同步来自雷达、摄像头和激光雷达的数据流,确保它们在时间上的对齐。

三、总结

ADTF Streaming Service在自动驾驶数采领域的应用,关键在于其能够实现多传感器数据的高效同步与处理。以下是几个关键应用点:

**多传感器数据融合:**通过数据管道同步不同传感器的数据,实现高精度的环境感知。

**实时决策支持:**利用触发管道快速响应传感器触发的事件,为决策算法提供实时数据。

数据存储与回放:通过Streaming Sink实现数据的高效存储,以及通过子流进行数据回放和分析。

ADTF Streaming Service为自动驾驶数采系统提供了一个强大的工具,它不仅能够处理和同步多传感器数据,还能够适应不断变化的开发需求。


如您对上述产品和解决方案感兴趣,

欢迎联系康谋自动驾驶团队了解更多信息。

我们将竭诚为您服务!

期待与您的交流!康谋ADTF自动驾驶辅助系统开发框架 - AD系统开发、测试验证及可视化 | 多传感器数据流实时处理 | 可扩展可集成 (keymotek.com)https://keymotek.com/adas-development-framework_adtf/

相关推荐
IT古董8 小时前
【第五章:计算机视觉-计算机视觉在工业制造领域中的应用】1.工业缺陷分割-(3)基于BiseNet算法的工业缺陷分割实战:数据读取、模型搭建、训练与测试
人工智能·计算机视觉·制造
放羊郎8 小时前
基于RTAB-Map和RRT的自主导航方案
人工智能·数码相机·计算机视觉
从零开始学习人工智能10 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发10 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu12311 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一13 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
ACP广源盛1392462567315 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超15 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶16 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y2003091616 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习