基于opencv 纹理图/枯叶图 MTF/ACUTANCE评测算法

1.有SFR算法为何还要引入基于纹理图的MTF/ACUTANCE评测算法?

如果使用的raw数据,只用sfr测试不同频率的mtf是完全可以的。但如果经过isp处理后,因为存在降噪/锐化处理,并不能真正体现纹理和边缘的实际表现。

例如:

在相机 A 上,边缘和纹理的清晰度似乎相等。纹理中可以看到许多细节。

在相机 B 上,边缘经过了ISP数字增强,SFR 转换看起来过于清晰。边缘Ring也是处理的产物。在纹理部分,相机 A 上可见的许多细节在相机B上都消失了。

猛地一看,边缘清晰度测量第二台相机更清晰。但仔细检查对比度纹理表明,相机 A 比相机 B 更好地保留了精细的细节。

纹理图评测方法的目的是量化这种差异。

2.如何使用 纹理图/枯叶图 chart来评判camera 再现细节的能力?

Ⅰ在实验室打光拍摄纹理图后可以直接用imatest来计算MTF/ACUTANCE,只要设置好imatest的纹理图类型,就可以计算出结果,包括MTF曲线和锐度。

Ⅱ也可以使用opencv或matlab自己写一段程序完成计算,我使用的是opencv,便于工程应用

原理如下:1.计算拍摄图的PSDi

2.计算标准chart的PSDcalib,或从商家拿到已有的标定的PSD数据

3.MTF=PSDi/PSDcalib,得到MTF

4.CSF计算如下

其中v is in cycles/degrees,其它都是固定系数。

5.根据A=(MTF*CSF积分)以及Ar=(CSF积分),通过A/Ar计算Acutance,这一步

注意cycles/pixel与cycles/degree这两个量纲的转换。

6.以上为了增加准确性,还需要考虑进去噪声的影响。

评判标注如下:

3.附一段结果和伪代码:

0. 实拍纹理图

1.PSDi

2.PSDcalib

3.PSDnoise

4.MTF

5.CSF

Acutance = 0.78,属于轻微模糊。

伪代码:

P0=getChartCalibPSD()

P1=getChartRealPSD()

P2=getChartNoisePSD()

MTF = (P1-P2)/P0

CSF = getCSF()

A = ∫MTF*CSFdv

Ar = ∫CSFdv

acutance = A/Ar.

专注于影像行业15年,对镜头芯片及画质评测有一定积累,如需要合作开发项目请私信联系本人,勿做伸手党。

相关推荐
JxWang0530 分钟前
pandas计算某列每行带有分隔符的数据中包含特定值的次数
人工智能
能源系统预测和优化研究31 分钟前
创新点解读:基于非线性二次分解的Ridge-RF-XGBoost时间序列预测(附代码实现)
人工智能·深度学习·算法
执笔论英雄36 分钟前
【RL】ROLL下载模型流程
人工智能·算法·机器学习
لا معنى له39 分钟前
目标分割介绍及最新模型----学习笔记
人工智能·笔记·深度学习·学习·机器学习·计算机视觉
carver w1 小时前
one-hot编码
人工智能
邮一朵向日葵1 小时前
企查查开放平台MCP:为AI智能体注入精准商业数据,驱动智能决策新时代
大数据·人工智能
沃达德软件1 小时前
智能警务视频侦查系统
大数据·人工智能·数据挖掘·数据分析·实时音视频·视频编解码
说私域2 小时前
链动2+1模式AI智能名片S2B2C商城小程序中电商直播的应用机制与价值创新研究
人工智能·小程序
北邮刘老师2 小时前
【智能体互联协议解析】身份码-智能体的身份证号
网络·人工智能·大模型·智能体·智能体互联网
Wulida0099912 小时前
【目标检测】基于改进YOLOv13-C3k2-DWR的铲斗定位系统研究
人工智能·yolo·目标检测