基于opencv 纹理图/枯叶图 MTF/ACUTANCE评测算法

1.有SFR算法为何还要引入基于纹理图的MTF/ACUTANCE评测算法?

如果使用的raw数据,只用sfr测试不同频率的mtf是完全可以的。但如果经过isp处理后,因为存在降噪/锐化处理,并不能真正体现纹理和边缘的实际表现。

例如:

在相机 A 上,边缘和纹理的清晰度似乎相等。纹理中可以看到许多细节。

在相机 B 上,边缘经过了ISP数字增强,SFR 转换看起来过于清晰。边缘Ring也是处理的产物。在纹理部分,相机 A 上可见的许多细节在相机B上都消失了。

猛地一看,边缘清晰度测量第二台相机更清晰。但仔细检查对比度纹理表明,相机 A 比相机 B 更好地保留了精细的细节。

纹理图评测方法的目的是量化这种差异。

2.如何使用 纹理图/枯叶图 chart来评判camera 再现细节的能力?

Ⅰ在实验室打光拍摄纹理图后可以直接用imatest来计算MTF/ACUTANCE,只要设置好imatest的纹理图类型,就可以计算出结果,包括MTF曲线和锐度。

Ⅱ也可以使用opencv或matlab自己写一段程序完成计算,我使用的是opencv,便于工程应用

原理如下:1.计算拍摄图的PSDi

2.计算标准chart的PSDcalib,或从商家拿到已有的标定的PSD数据

3.MTF=PSDi/PSDcalib,得到MTF

4.CSF计算如下

其中v is in cycles/degrees,其它都是固定系数。

5.根据A=(MTF*CSF积分)以及Ar=(CSF积分),通过A/Ar计算Acutance,这一步

注意cycles/pixel与cycles/degree这两个量纲的转换。

6.以上为了增加准确性,还需要考虑进去噪声的影响。

评判标注如下:

3.附一段结果和伪代码:

0. 实拍纹理图

1.PSDi

2.PSDcalib

3.PSDnoise

4.MTF

5.CSF

Acutance = 0.78,属于轻微模糊。

伪代码:

P0=getChartCalibPSD()

P1=getChartRealPSD()

P2=getChartNoisePSD()

MTF = (P1-P2)/P0

CSF = getCSF()

A = ∫MTF*CSFdv

Ar = ∫CSFdv

acutance = A/Ar.

专注于影像行业15年,对镜头芯片及画质评测有一定积累,如需要合作开发项目请私信联系本人,勿做伸手党。

相关推荐
别惹CC6 分钟前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei2 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴7 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20258 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR9 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散139 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8249 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945199 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火10 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴11 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习