基于opencv 纹理图/枯叶图 MTF/ACUTANCE评测算法

1.有SFR算法为何还要引入基于纹理图的MTF/ACUTANCE评测算法?

如果使用的raw数据,只用sfr测试不同频率的mtf是完全可以的。但如果经过isp处理后,因为存在降噪/锐化处理,并不能真正体现纹理和边缘的实际表现。

例如:

在相机 A 上,边缘和纹理的清晰度似乎相等。纹理中可以看到许多细节。

在相机 B 上,边缘经过了ISP数字增强,SFR 转换看起来过于清晰。边缘Ring也是处理的产物。在纹理部分,相机 A 上可见的许多细节在相机B上都消失了。

猛地一看,边缘清晰度测量第二台相机更清晰。但仔细检查对比度纹理表明,相机 A 比相机 B 更好地保留了精细的细节。

纹理图评测方法的目的是量化这种差异。

2.如何使用 纹理图/枯叶图 chart来评判camera 再现细节的能力?

Ⅰ在实验室打光拍摄纹理图后可以直接用imatest来计算MTF/ACUTANCE,只要设置好imatest的纹理图类型,就可以计算出结果,包括MTF曲线和锐度。

Ⅱ也可以使用opencv或matlab自己写一段程序完成计算,我使用的是opencv,便于工程应用

原理如下:1.计算拍摄图的PSDi

2.计算标准chart的PSDcalib,或从商家拿到已有的标定的PSD数据

3.MTF=PSDi/PSDcalib,得到MTF

4.CSF计算如下

其中v is in cycles/degrees,其它都是固定系数。

5.根据A=(MTF*CSF积分)以及Ar=(CSF积分),通过A/Ar计算Acutance,这一步

注意cycles/pixel与cycles/degree这两个量纲的转换。

6.以上为了增加准确性,还需要考虑进去噪声的影响。

评判标注如下:

3.附一段结果和伪代码:

0. 实拍纹理图

1.PSDi

2.PSDcalib

3.PSDnoise

4.MTF

5.CSF

Acutance = 0.78,属于轻微模糊。

伪代码:

P0=getChartCalibPSD()

P1=getChartRealPSD()

P2=getChartNoisePSD()

MTF = (P1-P2)/P0

CSF = getCSF()

A = ∫MTF*CSFdv

Ar = ∫CSFdv

acutance = A/Ar.

专注于影像行业15年,对镜头芯片及画质评测有一定积累,如需要合作开发项目请私信联系本人,勿做伸手党。

相关推荐
qinyia30 分钟前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
硬件学长森哥3 小时前
Android影像基础--cameraAPI2核心流程
android·计算机视觉
昨日之日20063 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
深圳市快瞳科技有限公司4 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
SEO_juper6 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号6 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha6 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云6 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊6 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint6 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp