基于opencv 纹理图/枯叶图 MTF/ACUTANCE评测算法

1.有SFR算法为何还要引入基于纹理图的MTF/ACUTANCE评测算法?

如果使用的raw数据,只用sfr测试不同频率的mtf是完全可以的。但如果经过isp处理后,因为存在降噪/锐化处理,并不能真正体现纹理和边缘的实际表现。

例如:

在相机 A 上,边缘和纹理的清晰度似乎相等。纹理中可以看到许多细节。

在相机 B 上,边缘经过了ISP数字增强,SFR 转换看起来过于清晰。边缘Ring也是处理的产物。在纹理部分,相机 A 上可见的许多细节在相机B上都消失了。

猛地一看,边缘清晰度测量第二台相机更清晰。但仔细检查对比度纹理表明,相机 A 比相机 B 更好地保留了精细的细节。

纹理图评测方法的目的是量化这种差异。

2.如何使用 纹理图/枯叶图 chart来评判camera 再现细节的能力?

Ⅰ在实验室打光拍摄纹理图后可以直接用imatest来计算MTF/ACUTANCE,只要设置好imatest的纹理图类型,就可以计算出结果,包括MTF曲线和锐度。

Ⅱ也可以使用opencv或matlab自己写一段程序完成计算,我使用的是opencv,便于工程应用

原理如下:1.计算拍摄图的PSDi

2.计算标准chart的PSDcalib,或从商家拿到已有的标定的PSD数据

3.MTF=PSDi/PSDcalib,得到MTF

4.CSF计算如下

其中v is in cycles/degrees,其它都是固定系数。

5.根据A=(MTF*CSF积分)以及Ar=(CSF积分),通过A/Ar计算Acutance,这一步

注意cycles/pixel与cycles/degree这两个量纲的转换。

6.以上为了增加准确性,还需要考虑进去噪声的影响。

评判标注如下:

3.附一段结果和伪代码:

0. 实拍纹理图

1.PSDi

2.PSDcalib

3.PSDnoise

4.MTF

5.CSF

Acutance = 0.78,属于轻微模糊。

伪代码:

P0=getChartCalibPSD()

P1=getChartRealPSD()

P2=getChartNoisePSD()

MTF = (P1-P2)/P0

CSF = getCSF()

A = ∫MTF*CSFdv

Ar = ∫CSFdv

acutance = A/Ar.

专注于影像行业15年,对镜头芯片及画质评测有一定积累,如需要合作开发项目请私信联系本人,勿做伸手党。

相关推荐
用你的胜利博我一笑吧4 小时前
opencv(自用)
人工智能·opencv·计算机视觉
pps-key4 小时前
ai交易算力研究
大数据·jvm·人工智能·机器学习
2401_841495644 小时前
【机器学习】限制性玻尔兹曼机(RBM)
人工智能·python·深度学习·神经网络·机器学习·无监督学习·限制性玻尔兹曼机
最晚的py5 小时前
cnn卷积层详解
人工智能·pytorch·cnn卷积层
彭军辉5 小时前
生命体AI的本质是抽象主义人工智能
人工智能
dajun1811234565 小时前
智能体在复杂工作流中的角色分配
大数据·运维·人工智能
yesyesido5 小时前
AI手办工坊:3D渲染级二次元写真生成、多风格角色定制与高清无损下载的一键创作平台
人工智能·3d
梦境虽美,却不长5 小时前
简单项目,天问ASR离线语音+esp8266的红外语音助手2026-1-2
人工智能·语音识别·红外遥控·arduino编程·天问编程
AI Echoes5 小时前
LangChain中的工具与工具包
人工智能·python·langchain·prompt·agent
源代码杀手5 小时前
Cloudflare 全球边缘节点:VoiceCraft 让 TTS/STT 请求实现全球近场极速响应
人工智能