基于opencv 纹理图/枯叶图 MTF/ACUTANCE评测算法

1.有SFR算法为何还要引入基于纹理图的MTF/ACUTANCE评测算法?

如果使用的raw数据,只用sfr测试不同频率的mtf是完全可以的。但如果经过isp处理后,因为存在降噪/锐化处理,并不能真正体现纹理和边缘的实际表现。

例如:

在相机 A 上,边缘和纹理的清晰度似乎相等。纹理中可以看到许多细节。

在相机 B 上,边缘经过了ISP数字增强,SFR 转换看起来过于清晰。边缘Ring也是处理的产物。在纹理部分,相机 A 上可见的许多细节在相机B上都消失了。

猛地一看,边缘清晰度测量第二台相机更清晰。但仔细检查对比度纹理表明,相机 A 比相机 B 更好地保留了精细的细节。

纹理图评测方法的目的是量化这种差异。

2.如何使用 纹理图/枯叶图 chart来评判camera 再现细节的能力?

Ⅰ在实验室打光拍摄纹理图后可以直接用imatest来计算MTF/ACUTANCE,只要设置好imatest的纹理图类型,就可以计算出结果,包括MTF曲线和锐度。

Ⅱ也可以使用opencv或matlab自己写一段程序完成计算,我使用的是opencv,便于工程应用

原理如下:1.计算拍摄图的PSDi

2.计算标准chart的PSDcalib,或从商家拿到已有的标定的PSD数据

3.MTF=PSDi/PSDcalib,得到MTF

4.CSF计算如下

其中v is in cycles/degrees,其它都是固定系数。

5.根据A=(MTF*CSF积分)以及Ar=(CSF积分),通过A/Ar计算Acutance,这一步

注意cycles/pixel与cycles/degree这两个量纲的转换。

6.以上为了增加准确性,还需要考虑进去噪声的影响。

评判标注如下:

3.附一段结果和伪代码:

0. 实拍纹理图

1.PSDi

2.PSDcalib

3.PSDnoise

4.MTF

5.CSF

Acutance = 0.78,属于轻微模糊。

伪代码:

P0=getChartCalibPSD()

P1=getChartRealPSD()

P2=getChartNoisePSD()

MTF = (P1-P2)/P0

CSF = getCSF()

A = ∫MTF*CSFdv

Ar = ∫CSFdv

acutance = A/Ar.

专注于影像行业15年,对镜头芯片及画质评测有一定积累,如需要合作开发项目请私信联系本人,勿做伸手党。

相关推荐
JQLvopkk8 分钟前
能用C#开发AI
开发语言·人工智能·c#
郝学胜-神的一滴1 小时前
当AI遇见架构:Vibe Coding时代的设计模式复兴
开发语言·数据结构·人工智能·算法·设计模式·架构
Clarence Liu7 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型7 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室7 小时前
AI4Science开源汇总
人工智能
CeshirenTester8 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis8 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs8 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷8 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极8 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发