基于opencv 纹理图/枯叶图 MTF/ACUTANCE评测算法

1.有SFR算法为何还要引入基于纹理图的MTF/ACUTANCE评测算法?

如果使用的raw数据,只用sfr测试不同频率的mtf是完全可以的。但如果经过isp处理后,因为存在降噪/锐化处理,并不能真正体现纹理和边缘的实际表现。

例如:

在相机 A 上,边缘和纹理的清晰度似乎相等。纹理中可以看到许多细节。

在相机 B 上,边缘经过了ISP数字增强,SFR 转换看起来过于清晰。边缘Ring也是处理的产物。在纹理部分,相机 A 上可见的许多细节在相机B上都消失了。

猛地一看,边缘清晰度测量第二台相机更清晰。但仔细检查对比度纹理表明,相机 A 比相机 B 更好地保留了精细的细节。

纹理图评测方法的目的是量化这种差异。

2.如何使用 纹理图/枯叶图 chart来评判camera 再现细节的能力?

Ⅰ在实验室打光拍摄纹理图后可以直接用imatest来计算MTF/ACUTANCE,只要设置好imatest的纹理图类型,就可以计算出结果,包括MTF曲线和锐度。

Ⅱ也可以使用opencv或matlab自己写一段程序完成计算,我使用的是opencv,便于工程应用

原理如下:1.计算拍摄图的PSDi

2.计算标准chart的PSDcalib,或从商家拿到已有的标定的PSD数据

3.MTF=PSDi/PSDcalib,得到MTF

4.CSF计算如下

其中v is in cycles/degrees,其它都是固定系数。

5.根据A=(MTF*CSF积分)以及Ar=(CSF积分),通过A/Ar计算Acutance,这一步

注意cycles/pixel与cycles/degree这两个量纲的转换。

6.以上为了增加准确性,还需要考虑进去噪声的影响。

评判标注如下:

3.附一段结果和伪代码:

0. 实拍纹理图

1.PSDi

2.PSDcalib

3.PSDnoise

4.MTF

5.CSF

Acutance = 0.78,属于轻微模糊。

伪代码:

P0=getChartCalibPSD()

P1=getChartRealPSD()

P2=getChartNoisePSD()

MTF = (P1-P2)/P0

CSF = getCSF()

A = ∫MTF*CSFdv

Ar = ∫CSFdv

acutance = A/Ar.

专注于影像行业15年,对镜头芯片及画质评测有一定积累,如需要合作开发项目请私信联系本人,勿做伸手党。

相关推荐
lljss20204 分钟前
5. 神经网络的学习
人工智能·神经网络·学习
jie*5 分钟前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
闲看云起6 分钟前
论文阅读《LIMA:Less Is More for Alignment》
论文阅读·人工智能·语言模型·自然语言处理
jie*9 分钟前
小杰深度学习(sixteen)——视觉-经典神经网络——MobileNetV2
人工智能·python·深度学习·神经网络·tensorflow·numpy·matplotlib
TGITCIC9 分钟前
有趣的机器学习-利用神经网络来模拟“古龙”写作风格的输出器
人工智能·深度学习·神经网络·ai大模型·模型训练·训练模型·手搓模型
m0_6501082417 分钟前
【论文精读】InstanceCap:通过实例感知提升文本到视频生成效果
计算机视觉·文生视频·论文精读·实例感知·实例级语义控制
whltaoin22 分钟前
AI 超级智能体全栈项目阶段五:RAG 四大流程详解、最佳实践与调优(基于 Spring AI 实现)
java·人工智能·spring·rag·springai
Piink35 分钟前
网络模型训练完整代码
人工智能·深度学习·机器学习
曾经的三心草36 分钟前
OpenCV4-直方图与傅里叶变换-项目实战-信用卡数字识别
python·opencv·计算机视觉
luoganttcc38 分钟前
在 orin 上 安装了 miniconda 如何使用 orin 内置的 opencv
人工智能·opencv·计算机视觉