我们如何将数据输入到神经网络中?

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

下面我拿识别美女的例子来给大家介绍如何将美女的图片数据输入到神经网络中。

此例中,待输入的数据是一张图像。为了存储图像,计算机要存储三个独立的矩阵(矩阵可以理解成二维数组,后面的教程会给大家详细讲解),这三个矩阵分别与此图像的红色、绿色和蓝色相对应(世界上的所有颜色都可以通过红绿蓝三种颜色调配出来)。如果图像的大小是64 * 64个像素(一个像素就是一个颜色点,一个颜色点由红绿蓝三个值来表示,例如,红绿蓝为255,255,255,那么这个颜色点就是白色),所以3个64 * 64大小的矩阵在计算机中就代表了这张图像,矩阵里面的数值就对应于图像的红绿蓝强度值。上图中只画了个5 * 4的矩阵,而不是64 * 64,为什么呢?因为没有必要,搞复杂了反而不易于理解。

为了更加方便后面的处理,我们一般把上面那3个矩阵转化成1个向量x(向量可以理解成1 * n或n * 1的数组,前者为行向量,后者为列向量,向量也会在后面的文章专门讲解)。那么这个向量x的总维数就是64 * 64 * 3,结果是12288。在人工智能领域中,每一个输入到神经网络的数据都被叫做一个特征,那么上面的这张图像中就有12288个特征。这个12288维的向量也被叫做特征向量。神经网络接收这个特征向量x作为输入,并进行预测,然后给出相应的结果。

对于不同的应用,需要识别的对象不同,有些是语音、有些是图像、有些是传感器数据,但是它们在计算机中都有对应的数字表示形式,通常我们会把它们转化成一个特征向量,然后将其输入到神经网络中。

本篇文章我们已经知道了数据是如何被输入到神经网络中的。那么神经网络是如何根据这些数据进行预测的呢?我们将一张图片输入到神经网络中,神经网络是如何预测这张图中是A.V女生的呢?点击神经网络是如何进行预测的

相关推荐
爱喝可乐的老王19 分钟前
PyTorch深度学习参数初始化和正则化
人工智能·pytorch·深度学习
杭州泽沃电子科技有限公司3 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao5 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北126 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887827 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰7 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技7 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_7 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1518 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai8 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能