我们如何将数据输入到神经网络中?

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

下面我拿识别美女的例子来给大家介绍如何将美女的图片数据输入到神经网络中。

此例中,待输入的数据是一张图像。为了存储图像,计算机要存储三个独立的矩阵(矩阵可以理解成二维数组,后面的教程会给大家详细讲解),这三个矩阵分别与此图像的红色、绿色和蓝色相对应(世界上的所有颜色都可以通过红绿蓝三种颜色调配出来)。如果图像的大小是64 * 64个像素(一个像素就是一个颜色点,一个颜色点由红绿蓝三个值来表示,例如,红绿蓝为255,255,255,那么这个颜色点就是白色),所以3个64 * 64大小的矩阵在计算机中就代表了这张图像,矩阵里面的数值就对应于图像的红绿蓝强度值。上图中只画了个5 * 4的矩阵,而不是64 * 64,为什么呢?因为没有必要,搞复杂了反而不易于理解。

为了更加方便后面的处理,我们一般把上面那3个矩阵转化成1个向量x(向量可以理解成1 * n或n * 1的数组,前者为行向量,后者为列向量,向量也会在后面的文章专门讲解)。那么这个向量x的总维数就是64 * 64 * 3,结果是12288。在人工智能领域中,每一个输入到神经网络的数据都被叫做一个特征,那么上面的这张图像中就有12288个特征。这个12288维的向量也被叫做特征向量。神经网络接收这个特征向量x作为输入,并进行预测,然后给出相应的结果。

对于不同的应用,需要识别的对象不同,有些是语音、有些是图像、有些是传感器数据,但是它们在计算机中都有对应的数字表示形式,通常我们会把它们转化成一个特征向量,然后将其输入到神经网络中。

本篇文章我们已经知道了数据是如何被输入到神经网络中的。那么神经网络是如何根据这些数据进行预测的呢?我们将一张图片输入到神经网络中,神经网络是如何预测这张图中是A.V女生的呢?点击神经网络是如何进行预测的

相关推荐
R-G-B1 天前
OpenCV 实战篇——如何测算出任一副图片中的物体的实际尺寸?传感器尺寸与像元尺寸的关系?
人工智能·opencv·工业相机·传感器尺寸·像元·测算图片中的物体尺寸·像元与物体尺寸
Hello123网站1 天前
Ferret:苹果发布的多模态大语言模型
人工智能·语言模型·自然语言处理·ai工具
MobotStone1 天前
比对手快10倍?更强更精准?谷歌"纳米香蕉"到底藏着什么黑科技
人工智能
CoovallyAIHub1 天前
推理提速一倍!SegDT:轻量化扩散 Transformer,医学图像分割的技术跨越
深度学习·算法·计算机视觉
爱写代码的小朋友1 天前
STEM背景下人工智能素养框架的研究
人工智能
CoovallyAIHub1 天前
无人机方案如何让桥梁监测更安全、更智能?融合RTK与超高分辨率成像,优于毫米精度
深度学习·算法·计算机视觉
大学生毕业题目1 天前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
居7然1 天前
美团大模型“龙猫”登场,能否重塑本地生活新战局?
人工智能·大模型·生活·美团
说私域1 天前
社交新零售时代本地化微商的发展路径研究——基于开源AI智能名片链动2+1模式S2B2C商城小程序源的创新实践
人工智能·开源·零售
IT_陈寒1 天前
Python性能优化:5个被低估的魔法方法让你的代码提速50%
前端·人工智能·后端