【脏数据 bug 解决】ValueError: mean must have 1 elements if it is an iterable, got 3

问题描述:

  1. 在训练模型的过程中,出现 clip_image_processor 无法处理数据的问题,说明数据集中很可能出现了脏数据。
  2. 本文使用的数据为 LAION-Aesthetics-V2-6.5plus,从 https://dagshub.com/DagsHub-Datasets/LAION-Aesthetics-V2-6.5plus 上下载的。
python 复制代码
Traceback (most recent call last):
...
  File "/xxx/check_train_data.py", line 69, in __getitem__
    raise e  # Re-raise the exception to halt the training process
    ^^^^^^^
  File "/xxx/check_train_data.py", line 64, in __getitem__
    clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/xxx/lib/python3.12/site-packages/transformers/image_processing_utils.py", line 41, in __call__
    return self.preprocess(images, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/xxx/lib/python3.12/site-packages/transformers/models/clip/image_processing_clip.py", line 341, in preprocess
    self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
  File "/xxx/lib/python3.12/site-packages/transformers/image_processing_utils.py", line 111, in normalize
    return normalize(
           ^^^^^^^^^^
  File "/xxx/lib/python3.12/site-packages/transformers/image_transforms.py", line 392, in normalize
    raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
ValueError: mean must have 1 elements if it is an iterable, got 3

解决方案:

  1. 将原代码的 clip_image = self.clip_image_processor 修改为 try、except 来找到导致报错的图片。
  2. 将加载数据的代码部分拎出,并遍历一遍。
python 复制代码
 # read image
 raw_image = Image.open(os.path.join(self.image_root_path, image_file))
 image = self.transform(raw_image.convert("RGB"))
 # clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
 try:
     clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
     print(f'image_file_{idx} processed with clip_image_processor: {image_file}')
 except Exception as e:
     print(f'Error processing image_file_{idx}: {image_file}')
     print(e)
     raise e  # Re-raise the exception to halt the training process
  1. 最终卡在 4235 附近的图片,通过肉眼观察,发现 4236 是图片空的😂
  2. 手动删除 4236 图片以及对应的 json 文本后便可正常训练!🏋️
相关推荐
人工智能AI技术5 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡5 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣5 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56785 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6006 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书1736 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416276 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented6 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie7 小时前
ADALog 日志异常检测
人工智能
Jouham7 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能