【脏数据 bug 解决】ValueError: mean must have 1 elements if it is an iterable, got 3

问题描述:

  1. 在训练模型的过程中,出现 clip_image_processor 无法处理数据的问题,说明数据集中很可能出现了脏数据。
  2. 本文使用的数据为 LAION-Aesthetics-V2-6.5plus,从 https://dagshub.com/DagsHub-Datasets/LAION-Aesthetics-V2-6.5plus 上下载的。
python 复制代码
Traceback (most recent call last):
...
  File "/xxx/check_train_data.py", line 69, in __getitem__
    raise e  # Re-raise the exception to halt the training process
    ^^^^^^^
  File "/xxx/check_train_data.py", line 64, in __getitem__
    clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/xxx/lib/python3.12/site-packages/transformers/image_processing_utils.py", line 41, in __call__
    return self.preprocess(images, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/xxx/lib/python3.12/site-packages/transformers/models/clip/image_processing_clip.py", line 341, in preprocess
    self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
  File "/xxx/lib/python3.12/site-packages/transformers/image_processing_utils.py", line 111, in normalize
    return normalize(
           ^^^^^^^^^^
  File "/xxx/lib/python3.12/site-packages/transformers/image_transforms.py", line 392, in normalize
    raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
ValueError: mean must have 1 elements if it is an iterable, got 3

解决方案:

  1. 将原代码的 clip_image = self.clip_image_processor 修改为 try、except 来找到导致报错的图片。
  2. 将加载数据的代码部分拎出,并遍历一遍。
python 复制代码
 # read image
 raw_image = Image.open(os.path.join(self.image_root_path, image_file))
 image = self.transform(raw_image.convert("RGB"))
 # clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
 try:
     clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
     print(f'image_file_{idx} processed with clip_image_processor: {image_file}')
 except Exception as e:
     print(f'Error processing image_file_{idx}: {image_file}')
     print(e)
     raise e  # Re-raise the exception to halt the training process
  1. 最终卡在 4235 附近的图片,通过肉眼观察,发现 4236 是图片空的😂
  2. 手动删除 4236 图片以及对应的 json 文本后便可正常训练!🏋️
相关推荐
It's now2 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R2 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
智算菩萨3 小时前
AIGC Bar中的API站最新使用全指南(2025/12/12)
aigc
西南胶带の池上桜3 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI3 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
墨风如雪3 小时前
告别AI塑料感:阿里Qwen3-Omni-Flash要把大模型做成真人
aigc
小和尚同志3 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊3 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great3 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体