MindSearch容器构建教程

一、介绍

书生·浦语团队提出了 MindSearch(思·索)框架,能够在 3 分钟内主动从 300+ 网页中搜集整理有效信息,总结归纳,解决人类需要 3 小时才能完成的任务。

二、应用场景

包括但不限于以下几个方面:

  • 学术研究 :帮助研究人员快速搜集和整理相关领域的文献资料,提高研究效率。
  • 市场调研 :为企业市场部门提供快速的市场信息搜集和分析能力,助力企业决策。
  • 新闻采编 :辅助新闻工作者快速获取和整理新闻素材,提高新闻报道的时效性和准确性。
  • 教育学习 :帮助学生和教师快速查找和整理学习资料,提升学习效果和教学效率。

三、容器构建流程

1、安装更新基础环境

复制代码
apt update 
apt upgrade 
apt install build-essential 

2、安装miniconda

Miniconda官网找到相应版本的安装链接,结合相应的安装指令,进行安装

安装miniconda命令

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

3、创建虚拟环境

复制代码
conda create -n mindsearch python=3.9
conda activate mindserarch

4、克隆项目仓库,并打开文件

复制代码
git clone https://github.com/InternLM/MindSearch
cd MindSearch

5、依赖安装

复制代码
pip install -r requirements.txt

6、启动 MindSearch API

启动 FastAPI 服务

复制代码
python -m mindsearch.app --lang en --model_format internlm_server
  • --lang: 模型的语言,en 为英语,cn 为中文。
  • --model_format: 模型的格式。
    • internlm_server 为 InternLM2.5-7b-chat 本地服务器。
    • gpt4 为 GPT4。 如果您想使用其他模型,请修改 models

7、修改 frontend/mindsearch_gradio.py文件最后一行,指定 host 和 port

复制代码
demo.launch(server_name='0.0.0.0', server_port=8080)

8、启动 MindSearch 前端

复制代码
python frontend/mindsearch_gradio.py

四、网页展示

相关推荐
PNP机器人2 分钟前
普林斯顿大学DPPO机器人学习突破:Diffusion Policy Policy Optimization 全新优化扩散策略
人工智能·深度学习·学习·机器人·仿真平台·franka fr3
Gyoku Mint10 分钟前
深度学习×第7卷:参数初始化与网络搭建——她第一次挑好初始的重量
人工智能·pytorch·rnn·深度学习·神经网络·算法·机器学习
mit6.82420 分钟前
[Vroom] 位置与矩阵 | 路由集成 | 抽象,解耦与通信
c++·人工智能·算法
Brian Xia26 分钟前
深度学习入门教程(三)- 线性代数教程
人工智能·深度学习·线性代数
lishaoan7732 分钟前
用TensorFlow进行逻辑回归(一)
人工智能·tensorflow·逻辑回归·分类器
boooo_hhh32 分钟前
第35周—————糖尿病预测模型优化探索
pytorch·深度学习·机器学习
302AI36 分钟前
全面刷新榜单,“全球最强 AI” Grok 4 评测:真实实力与局限性解析
人工智能·llm
强盛小灵通专卖员1 小时前
【中文核心期刊推荐】中国农业科技导报
人工智能·计算机视觉·期刊·中文核心期刊·导师·小论文
zskj_zhyl1 小时前
科技向善:七彩喜康养平台如何用智能技术弥合“数字鸿沟”?
人工智能·科技