MindSearch容器构建教程

一、介绍

书生·浦语团队提出了 MindSearch(思·索)框架,能够在 3 分钟内主动从 300+ 网页中搜集整理有效信息,总结归纳,解决人类需要 3 小时才能完成的任务。

二、应用场景

包括但不限于以下几个方面:

  • 学术研究 :帮助研究人员快速搜集和整理相关领域的文献资料,提高研究效率。
  • 市场调研 :为企业市场部门提供快速的市场信息搜集和分析能力,助力企业决策。
  • 新闻采编 :辅助新闻工作者快速获取和整理新闻素材,提高新闻报道的时效性和准确性。
  • 教育学习 :帮助学生和教师快速查找和整理学习资料,提升学习效果和教学效率。

三、容器构建流程

1、安装更新基础环境

复制代码
apt update 
apt upgrade 
apt install build-essential 

2、安装miniconda

Miniconda官网找到相应版本的安装链接,结合相应的安装指令,进行安装

安装miniconda命令

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

3、创建虚拟环境

复制代码
conda create -n mindsearch python=3.9
conda activate mindserarch

4、克隆项目仓库,并打开文件

复制代码
git clone https://github.com/InternLM/MindSearch
cd MindSearch

5、依赖安装

复制代码
pip install -r requirements.txt

6、启动 MindSearch API

启动 FastAPI 服务

复制代码
python -m mindsearch.app --lang en --model_format internlm_server
  • --lang: 模型的语言,en 为英语,cn 为中文。
  • --model_format: 模型的格式。
    • internlm_server 为 InternLM2.5-7b-chat 本地服务器。
    • gpt4 为 GPT4。 如果您想使用其他模型,请修改 models

7、修改 frontend/mindsearch_gradio.py文件最后一行,指定 host 和 port

复制代码
demo.launch(server_name='0.0.0.0', server_port=8080)

8、启动 MindSearch 前端

复制代码
python frontend/mindsearch_gradio.py

四、网页展示

相关推荐
小马虎本人3 分钟前
如果接口返回的数据特别慢?要怎么办?难道就要在当前页面一直等吗
前端·react.js·aigc
Ai多利4 分钟前
深度学习登上Nature子刊!特征选择创新思路
人工智能·算法·计算机视觉·多模态·特征选择
几道之旅5 分钟前
MCP(Model Context Protocol)与提示词撰写
人工智能
weixin_448781628 分钟前
DenseNet算法 实现乳腺癌识别
pytorch·深度学习·神经网络
Spider_Man12 分钟前
“AI查用户”也能这么简单?手把手带你用Node.js+前端玩转DeepSeek!
javascript·人工智能·node.js
T.D.C27 分钟前
【OpenCV】使用opencv找哈士奇的脸
人工智能·opencv·计算机视觉
大霸王龙1 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
一只爱撸猫的程序猿1 小时前
构建一个简单的智能文档问答系统实例
数据库·spring boot·aigc
yvestine1 小时前
自然语言处理——文本表示
人工智能·python·算法·自然语言处理·文本表示
zzc9211 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab