MindSearch容器构建教程

一、介绍

书生·浦语团队提出了 MindSearch(思·索)框架,能够在 3 分钟内主动从 300+ 网页中搜集整理有效信息,总结归纳,解决人类需要 3 小时才能完成的任务。

二、应用场景

包括但不限于以下几个方面:

  • 学术研究 :帮助研究人员快速搜集和整理相关领域的文献资料,提高研究效率。
  • 市场调研 :为企业市场部门提供快速的市场信息搜集和分析能力,助力企业决策。
  • 新闻采编 :辅助新闻工作者快速获取和整理新闻素材,提高新闻报道的时效性和准确性。
  • 教育学习 :帮助学生和教师快速查找和整理学习资料,提升学习效果和教学效率。

三、容器构建流程

1、安装更新基础环境

复制代码
apt update 
apt upgrade 
apt install build-essential 

2、安装miniconda

Miniconda官网找到相应版本的安装链接,结合相应的安装指令,进行安装

安装miniconda命令

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

3、创建虚拟环境

复制代码
conda create -n mindsearch python=3.9
conda activate mindserarch

4、克隆项目仓库,并打开文件

复制代码
git clone https://github.com/InternLM/MindSearch
cd MindSearch

5、依赖安装

复制代码
pip install -r requirements.txt

6、启动 MindSearch API

启动 FastAPI 服务

复制代码
python -m mindsearch.app --lang en --model_format internlm_server
  • --lang: 模型的语言,en 为英语,cn 为中文。
  • --model_format: 模型的格式。
    • internlm_server 为 InternLM2.5-7b-chat 本地服务器。
    • gpt4 为 GPT4。 如果您想使用其他模型,请修改 models

7、修改 frontend/mindsearch_gradio.py文件最后一行,指定 host 和 port

复制代码
demo.launch(server_name='0.0.0.0', server_port=8080)

8、启动 MindSearch 前端

复制代码
python frontend/mindsearch_gradio.py

四、网页展示

相关推荐
阿巴阿巴boer17 分钟前
Gemini 3 免费使用,非全功能,不限国家不用绑卡
ai
这张生成的图像能检测吗18 分钟前
(论文速读)多任务深度学习框架下基于Lamb波的多损伤数据集构建与量化算法
人工智能·深度学习·算法·数据集·结构健康监测
二川bro21 分钟前
2025年Python机器学习全栈指南:从基础到AI项目部署
人工智能·python·机器学习
梦想的初衷~24 分钟前
“科研创新与智能化转型“暨AI智能体(Agent)开发及与大语言模型的本地化部署、优化技术实践
人工智能·语言模型·自然语言处理·生物信息·材料科学
IT_陈寒1 小时前
React性能翻倍!90%开发者忽略的5个Hooks最佳实践
前端·人工智能·后端
大任视点1 小时前
消费电子PCB需求激增,科翔股份发力AI手机终端大周期
人工智能·智能手机
Learn Beyond Limits1 小时前
Correlation vs Cosine vs Euclidean Distance|相关性vs余弦相似度vs欧氏距离
人工智能·python·神经网络·机器学习·ai·数据挖掘
聆风吟º1 小时前
从想象到实现:网易CodeWave智能生成应用的全新体验
ai·网易codewave·生成应用
晨非辰3 小时前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
2301_812914873 小时前
简单神经网络
人工智能·深度学习·神经网络