MindSearch容器构建教程

一、介绍

书生·浦语团队提出了 MindSearch(思·索)框架,能够在 3 分钟内主动从 300+ 网页中搜集整理有效信息,总结归纳,解决人类需要 3 小时才能完成的任务。

二、应用场景

包括但不限于以下几个方面:

  • 学术研究 :帮助研究人员快速搜集和整理相关领域的文献资料,提高研究效率。
  • 市场调研 :为企业市场部门提供快速的市场信息搜集和分析能力,助力企业决策。
  • 新闻采编 :辅助新闻工作者快速获取和整理新闻素材,提高新闻报道的时效性和准确性。
  • 教育学习 :帮助学生和教师快速查找和整理学习资料,提升学习效果和教学效率。

三、容器构建流程

1、安装更新基础环境

复制代码
apt update 
apt upgrade 
apt install build-essential 

2、安装miniconda

Miniconda官网找到相应版本的安装链接,结合相应的安装指令,进行安装

安装miniconda命令

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

3、创建虚拟环境

复制代码
conda create -n mindsearch python=3.9
conda activate mindserarch

4、克隆项目仓库,并打开文件

复制代码
git clone https://github.com/InternLM/MindSearch
cd MindSearch

5、依赖安装

复制代码
pip install -r requirements.txt

6、启动 MindSearch API

启动 FastAPI 服务

复制代码
python -m mindsearch.app --lang en --model_format internlm_server
  • --lang: 模型的语言,en 为英语,cn 为中文。
  • --model_format: 模型的格式。
    • internlm_server 为 InternLM2.5-7b-chat 本地服务器。
    • gpt4 为 GPT4。 如果您想使用其他模型,请修改 models

7、修改 frontend/mindsearch_gradio.py文件最后一行,指定 host 和 port

复制代码
demo.launch(server_name='0.0.0.0', server_port=8080)

8、启动 MindSearch 前端

复制代码
python frontend/mindsearch_gradio.py

四、网页展示

相关推荐
云道轩1 分钟前
Planning Analytics Assistant (AI)简介
人工智能
bleuesprit2 分钟前
Lora训练的safetensor模型合并成GGUF
人工智能·语言模型
沛沛老爹2 分钟前
Web开发者转型AI安全实战:Agent Skills敏感数据脱敏架构设计
java·开发语言·人工智能·安全·rag·skills
bubiyoushang8886 分钟前
基于传统材料力学势能法的健康齿轮时变啮合刚度数值分析
人工智能·算法
玉梅小洋8 分钟前
Unity Muse 完整使用文档:Sprite+Texture专项
unity·ai·游戏引擎
煤炭里de黑猫10 分钟前
使用 PyTorch 实现标准 LSTM 神经网络
人工智能·pytorch·lstm
深度学习lover12 分钟前
<项目代码>yolo毛毛虫识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·毛毛虫识别
丝斯201115 分钟前
AI学习笔记整理(57)——大模型微调相关技术
人工智能·笔记·学习
沃达德软件15 分钟前
人脸比对技术助力破案
人工智能·深度学习·神经网络·目标检测·机器学习·生成对抗网络·计算机视觉
副露のmagic20 分钟前
Transformer架构
人工智能·深度学习·transformer