MindSearch容器构建教程

一、介绍

书生·浦语团队提出了 MindSearch(思·索)框架,能够在 3 分钟内主动从 300+ 网页中搜集整理有效信息,总结归纳,解决人类需要 3 小时才能完成的任务。

二、应用场景

包括但不限于以下几个方面:

  • 学术研究 :帮助研究人员快速搜集和整理相关领域的文献资料,提高研究效率。
  • 市场调研 :为企业市场部门提供快速的市场信息搜集和分析能力,助力企业决策。
  • 新闻采编 :辅助新闻工作者快速获取和整理新闻素材,提高新闻报道的时效性和准确性。
  • 教育学习 :帮助学生和教师快速查找和整理学习资料,提升学习效果和教学效率。

三、容器构建流程

1、安装更新基础环境

复制代码
apt update 
apt upgrade 
apt install build-essential 

2、安装miniconda

Miniconda官网找到相应版本的安装链接,结合相应的安装指令,进行安装

安装miniconda命令

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

3、创建虚拟环境

复制代码
conda create -n mindsearch python=3.9
conda activate mindserarch

4、克隆项目仓库,并打开文件

复制代码
git clone https://github.com/InternLM/MindSearch
cd MindSearch

5、依赖安装

复制代码
pip install -r requirements.txt

6、启动 MindSearch API

启动 FastAPI 服务

复制代码
python -m mindsearch.app --lang en --model_format internlm_server
  • --lang: 模型的语言,en 为英语,cn 为中文。
  • --model_format: 模型的格式。
    • internlm_server 为 InternLM2.5-7b-chat 本地服务器。
    • gpt4 为 GPT4。 如果您想使用其他模型,请修改 models

7、修改 frontend/mindsearch_gradio.py文件最后一行,指定 host 和 port

复制代码
demo.launch(server_name='0.0.0.0', server_port=8080)

8、启动 MindSearch 前端

复制代码
python frontend/mindsearch_gradio.py

四、网页展示

相关推荐
迎仔13 小时前
国内主流AI工具对比 - 豆包、元宝、千问、Kimi、DeepSeek、MiniMax、GLM
ai
人工智能AI技术13 小时前
YOLOv9目标检测实战:用Python搭建你的第一个实时交通监控系统
人工智能
小雨中_13 小时前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
拯救HMI的工程师13 小时前
【拯救HMI】工业HMI字体选择:拒绝“通用字体”,适配工业场景3大要求
人工智能
lczdyx13 小时前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
AomanHao13 小时前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像
AI智能观察13 小时前
从数据中心到服务大厅:数字人智能体如何革新电力行业服务模式
人工智能·数字人·智慧展厅·智能体·数字展厅
AI智能观察13 小时前
生成式AI驱动信息分发变革:GEO跃迁方向、价值锚点与企业生存指南
人工智能·流量运营·geo·ai搜索·智能营销·geo工具·geo平台
苏渡苇13 小时前
轻量化AI落地:Java + Spring Boot 实现设备异常预判
java·人工智能·spring boot·后端·网络协议·tcp/ip·spring
大熊背13 小时前
APEX系统中为什么 不用与EV0的差值计算曝光参数调整量
人工智能·算法·apex·自动曝光