MindSearch容器构建教程

一、介绍

书生·浦语团队提出了 MindSearch(思·索)框架,能够在 3 分钟内主动从 300+ 网页中搜集整理有效信息,总结归纳,解决人类需要 3 小时才能完成的任务。

二、应用场景

包括但不限于以下几个方面:

  • 学术研究 :帮助研究人员快速搜集和整理相关领域的文献资料,提高研究效率。
  • 市场调研 :为企业市场部门提供快速的市场信息搜集和分析能力,助力企业决策。
  • 新闻采编 :辅助新闻工作者快速获取和整理新闻素材,提高新闻报道的时效性和准确性。
  • 教育学习 :帮助学生和教师快速查找和整理学习资料,提升学习效果和教学效率。

三、容器构建流程

1、安装更新基础环境

复制代码
apt update 
apt upgrade 
apt install build-essential 

2、安装miniconda

Miniconda官网找到相应版本的安装链接,结合相应的安装指令,进行安装

安装miniconda命令

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

3、创建虚拟环境

复制代码
conda create -n mindsearch python=3.9
conda activate mindserarch

4、克隆项目仓库,并打开文件

复制代码
git clone https://github.com/InternLM/MindSearch
cd MindSearch

5、依赖安装

复制代码
pip install -r requirements.txt

6、启动 MindSearch API

启动 FastAPI 服务

复制代码
python -m mindsearch.app --lang en --model_format internlm_server
  • --lang: 模型的语言,en 为英语,cn 为中文。
  • --model_format: 模型的格式。
    • internlm_server 为 InternLM2.5-7b-chat 本地服务器。
    • gpt4 为 GPT4。 如果您想使用其他模型,请修改 models

7、修改 frontend/mindsearch_gradio.py文件最后一行,指定 host 和 port

复制代码
demo.launch(server_name='0.0.0.0', server_port=8080)

8、启动 MindSearch 前端

复制代码
python frontend/mindsearch_gradio.py

四、网页展示

相关推荐
Elastic 中国社区官方博客12 小时前
用 Elasticsearch 构建一个 ChatGPT connector 来查询 GitHub issues
大数据·人工智能·elasticsearch·搜索引擎·chatgpt·github·全文检索
蓝耘智算13 小时前
如何选择合适的GPU算力服务商?企业AI算力采购指南
ai·gpu算力·蓝耘
奔跑的石头_13 小时前
如何用AI创建一个适合你的编程社区用户名
人工智能
yuhaiqun198913 小时前
10分钟快速get:零基础AI人工智能学习路线
人工智能·学习
m0_6501082413 小时前
Co-MTP:面向自动驾驶的多时间融合协同轨迹预测框架
论文阅读·人工智能·自动驾驶·双时间域融合·突破单车感知局限·帧间轨迹预测·异构图transformer
向阳逐梦13 小时前
电子烟的4种屏幕驱动集成语音方案介绍
人工智能·语音识别
蓝耘智算13 小时前
蓝耘元生代GPU算力调度云平台深度解析:高性价比算力云与GPU算力租赁首选方案
人工智能·ai·gpu算力·蓝耘
ckjr00713 小时前
2025 创始人 IP+AI 峰会:见证时代分水岭
人工智能·创客匠人·创客匠人万人峰会
geneculture13 小时前
2025对2023《融智学导读》升级版,第三章:智能化双字棋盘软件(将智能化双字棋盘定位为第二次认知大飞跃的工作母机是一个极其精准和有力的论断)
人工智能·信息科学·融智学的重要应用·信智序位·全球软件定位系统
ccLianLian13 小时前
计算机视觉·ZegFormer
人工智能·计算机视觉