【PyTorch】神经网络的基本骨架-nn.Module的使用以及convolution-layers卷积层介绍

前提文章目录

【PyTorch】深度学习PyTorch环境配置及安装【详细清晰】
【PyTorch】深度学习PyTorch加载数据
【PyTorch】关于Tensorboard的简单使用
【PyTorch】关于Transforms的简单使用
【PyTorch】关于torchvision中的数据集以及dataloader的使用


文章目录

nn.Module的使用

nn:Neural network 神经网络

官网链接:https://pytorch.org/docs/1.8.1/nn.html

Containers骨架Module链接:https://pytorch.org/docs/1.8.1/generated/torch.nn.Module.html#torch.nn.Module



程序中的基本使用:

python 复制代码
import torch
from torch import nn


# 创建神经网络模板   debug不会进行执行 除非调用它才会进行执行
class testModel(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1  # 给一个输入直接将其输出
        return output


# 创建神经网络
testModel = testModel()   #进行debug 这是程序的开始
x = torch.tensor(1.0)
output = testModel(x)
print(output)

convolution-layers卷积层

convolution-layers链接:https://pytorch.org/docs/1.8.1/nn.html#convolution-layers

Conv2d

链接:https://pytorch.org/docs/1.8.1/nn.functional.html#conv2d

参数介绍:

  • input:输入
  • weight:权重。卷积核
  • bias:偏置
  • stride:卷积核移动的步长。可以是一个数字或一个元组(sH、sW)。默认值:1 。 sH、sW :控制横向的移动和控制纵向的移动
  • padding:填充
  • dilation:扩张 。内核元素之间的间距
  • groups:组别

卷积后的输出计算:
Stride步长设置:

用程序计算表示:

python 复制代码
import torch
import torch.nn.functional as F

# 输入数据是二维图像(2维矩阵)  看连续的([[)中括号数,有几个就是几维矩阵
input = torch.tensor([[1, 2, 0, 3, 1],  # 输入图像的第一行
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

# print(input.shape)  # torch.Size([5, 5])   只有高和宽
# print(kernel.shape)  # torch.Size([3, 3])

# 因为文档的输入是需要四个参数  所以这里用torch提供的尺寸变换
# 要求的是一个输入,所以放入input
# (1,1,5,5):需要变换成的样子   batch_size为1:只取一个样本; channel为1:二维灰度图  5,5: 是5x5的图像输入
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print(input.shape)  # torch.Size([1, 1, 5, 5])
print(kernel.shape)  # torch.Size([1, 1, 3, 3])

output = F.conv2d(input, kernel, stride=1)
print(output)

# 步长(步径)为2
output2 = F.conv2d(input, kernel, stride=2)
print(output2)

运行结果:

解释说明:

灰度图用2维矩阵表示,通道数channel为1。彩色图用3维矩阵表示,通道数为2。

padding填充设置:

程序计算:

python 复制代码
# padding为1
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

输出结果:

可以看到输出结果的尺寸变大。

相关推荐
之歆3 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派4 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词4 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3014 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578024 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员4 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder4 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me4 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU5 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
极海拾贝5 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案