图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。

当然,模型整体结构就是并列双分支,如果只是这些内容,不值得拿出来讲。

主要有意思的部分是其融合两分支的多标签召回模块(multilabel recall loss module,简称MRL)。

1,模型整体结构

按照原文的说法,该论文提出了一个双分支的模型结构,其中一个分支是基于ConvNext,一个是是UNet分支。(其实该模型的ConvNext分支也是个类似UNet的结构,先编码再解码。)基于ConvNext的分支负责提取全局特征,而UNet分支负责提取局部特征。两种特征结合从而提升医学图像分割能力。

2,多标签召回模块(MRL)

2.1 提出MRL模块的两个目的:

1)解决类别不平衡问题

2)解决两个分支的异构性问题。两个分支提取的特征和提取出的特征具有显著差异,直接融合,效果并非最优。

2.2 实现方式

MRL模块引入了召回损失,公式如下:

其中,C是像素的类别数,在一般医学图像分割中都是2,也就是前景和背景。指的是c类的几何平均置信度,指的是输入在所有类上的预测softmax分布。是类别c的召回值。

这个召回损失可以在迭代训练的过程中根据该轮训练中的召回表现动态调整,从而实现动态加权,这样就可以解决类别不平衡的问题。

相关推荐
m0_650108242 分钟前
ZeroMatch:基于预训练大视觉模型的零样本 RGB-D 点云配准
论文阅读·rgb-d点云配准·zeromatch·预训练视觉模型·零样本配准·手工几何特征
科技动态21 分钟前
BOE(京东方)“焕新2026”年终媒体智享会落地成都 三大显示技术品牌引领行业发展风潮
大数据·人工智能·媒体
魔镜前的帅比32 分钟前
向量数据库原理
数据库·人工智能
沃达德软件37 分钟前
警务大数据实战模型解析
大数据·人工智能
Slaughter信仰2 小时前
图解大模型_生成式AI原理与实战学习笔记前四张问答(7题)
人工智能·笔记·学习
龙腾亚太2 小时前
大模型十大高频问题之五:如何低成本部署大模型?有哪些开源框架推荐?
人工智能·langchain·llm·智能体·大模型培训
信息快讯2 小时前
【人工智能与数据驱动方法加速金属材料设计与应用】
人工智能·材料工程·金属材料·结构材料设计
c#上位机2 小时前
halcon图像增强——emphasize
图像处理·人工智能·计算机视觉·c#·上位机·halcon