图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。

当然,模型整体结构就是并列双分支,如果只是这些内容,不值得拿出来讲。

主要有意思的部分是其融合两分支的多标签召回模块(multilabel recall loss module,简称MRL)。

1,模型整体结构

按照原文的说法,该论文提出了一个双分支的模型结构,其中一个分支是基于ConvNext,一个是是UNet分支。(其实该模型的ConvNext分支也是个类似UNet的结构,先编码再解码。)基于ConvNext的分支负责提取全局特征,而UNet分支负责提取局部特征。两种特征结合从而提升医学图像分割能力。

2,多标签召回模块(MRL)

2.1 提出MRL模块的两个目的:

1)解决类别不平衡问题

2)解决两个分支的异构性问题。两个分支提取的特征和提取出的特征具有显著差异,直接融合,效果并非最优。

2.2 实现方式

MRL模块引入了召回损失,公式如下:

其中,C是像素的类别数,在一般医学图像分割中都是2,也就是前景和背景。指的是c类的几何平均置信度,指的是输入在所有类上的预测softmax分布。是类别c的召回值。

这个召回损失可以在迭代训练的过程中根据该轮训练中的召回表现动态调整,从而实现动态加权,这样就可以解决类别不平衡的问题。

相关推荐
源于花海14 分钟前
迁移学习的第三类方法:子空间学习(2)——流形学习
人工智能·机器学习·迁移学习·流形学习·子空间学习
方安乐16 分钟前
杂记:文档解析器之MinerU
人工智能
AI猫站长21 分钟前
快讯|星海图、众擎机器人、魔法原子释放IPO信号,2026年或成上市大年
人工智能·机器人·具身智能·灵心巧手·上市·星海图·众擎机器人
鲁邦通物联网23 分钟前
基于容器化的边缘计算网关应用部署实践:Python+MQTT
人工智能·边缘计算·数据采集·工业数据采集·边缘计算网关·5g数采
方安乐23 分钟前
杂记:文档解析器
人工智能
+电报dapp12930 分钟前
2025区块链革命:当乐高式公链遇见AI预言机,三大行业已被颠覆
人工智能·金融·web3·去中心化·区块链·哈希算法·零知识证明
测试人社区-浩辰30 分钟前
AI与区块链结合的测试验证方法
大数据·人工智能·分布式·后端·opencv·自动化·区块链
木头程序员35 分钟前
去中心化AI数据共识难题破解:区块链、联邦学习与数据确权的协同之道
人工智能·去中心化·区块链
Yngz_Miao39 分钟前
【深度学习】语义分割损失函数之SemScal Loss
人工智能·深度学习·语义分割·损失函数·semscalloss
玄同76541 分钟前
深入理解 SQLAlchemy 的 relationship:让 ORM 关联像 Python 对象一样简单
人工智能·python·sql·conda·fastapi·pip·sqlalchemy