图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。

当然,模型整体结构就是并列双分支,如果只是这些内容,不值得拿出来讲。

主要有意思的部分是其融合两分支的多标签召回模块(multilabel recall loss module,简称MRL)。

1,模型整体结构

按照原文的说法,该论文提出了一个双分支的模型结构,其中一个分支是基于ConvNext,一个是是UNet分支。(其实该模型的ConvNext分支也是个类似UNet的结构,先编码再解码。)基于ConvNext的分支负责提取全局特征,而UNet分支负责提取局部特征。两种特征结合从而提升医学图像分割能力。

2,多标签召回模块(MRL)

2.1 提出MRL模块的两个目的:

1)解决类别不平衡问题

2)解决两个分支的异构性问题。两个分支提取的特征和提取出的特征具有显著差异,直接融合,效果并非最优。

2.2 实现方式

MRL模块引入了召回损失,公式如下:

其中,C是像素的类别数,在一般医学图像分割中都是2,也就是前景和背景。指的是c类的几何平均置信度,指的是输入在所有类上的预测softmax分布。是类别c的召回值。

这个召回损失可以在迭代训练的过程中根据该轮训练中的召回表现动态调整,从而实现动态加权,这样就可以解决类别不平衡的问题。

相关推荐
WLJT12312312311 分钟前
AI懂你,家更暖:重塑生活温度的智能家电新范式
人工智能·生活
roman_日积跬步-终至千里28 分钟前
【计算机视觉(16)】语义理解-训练神经网络1_激活_预处理_初始化_BN
人工智能·神经网络·计算机视觉
AI营销实验室29 分钟前
原圈科技AI CRM系统引领2025文旅行业智能升级新趋势
人工智能·科技
AI营销前沿30 分钟前
私域AI首倡者韩剑,原圈科技领航AI营销
大数据·人工智能
咚咚王者31 分钟前
人工智能之数学基础 概率论与统计:第一章 基础概念
人工智能·概率论
_Li.31 分钟前
机器学习-集成学习
人工智能·机器学习·集成学习
Percent_bigdata38 分钟前
数据治理平台选型解析:AI大模型与智能体如何重塑企业数字基座
大数据·人工智能
牛客企业服务40 分钟前
AI面试监考:破解在线面试作弊难题
人工智能·面试·职场和发展
面包会有的,牛奶也会有的。44 分钟前
AI 测试平台:WHartTest V1.3.0 更新优化架构
人工智能
极度畅想1 小时前
脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)
机器学习·knn·脑机接口·情绪识别·bci·canberra距离