图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。

当然,模型整体结构就是并列双分支,如果只是这些内容,不值得拿出来讲。

主要有意思的部分是其融合两分支的多标签召回模块(multilabel recall loss module,简称MRL)。

1,模型整体结构

按照原文的说法,该论文提出了一个双分支的模型结构,其中一个分支是基于ConvNext,一个是是UNet分支。(其实该模型的ConvNext分支也是个类似UNet的结构,先编码再解码。)基于ConvNext的分支负责提取全局特征,而UNet分支负责提取局部特征。两种特征结合从而提升医学图像分割能力。

2,多标签召回模块(MRL)

2.1 提出MRL模块的两个目的:

1)解决类别不平衡问题

2)解决两个分支的异构性问题。两个分支提取的特征和提取出的特征具有显著差异,直接融合,效果并非最优。

2.2 实现方式

MRL模块引入了召回损失,公式如下:

其中,C是像素的类别数,在一般医学图像分割中都是2,也就是前景和背景。指的是c类的几何平均置信度,指的是输入在所有类上的预测softmax分布。是类别c的召回值。

这个召回损失可以在迭代训练的过程中根据该轮训练中的召回表现动态调整,从而实现动态加权,这样就可以解决类别不平衡的问题。

相关推荐
好奇龙猫2 分钟前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习
LiFileHub14 分钟前
ISO/IEC 5338:2023中文版
人工智能
慎独41328 分钟前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能
CICI131414131 小时前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
wanzhong23331 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
ZzzZ314159261 小时前
【无标题】
人工智能
Hcoco_me1 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__1 小时前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang
GMICLOUD1 小时前
GMI Cloud@AI周报 | MiniMax 叩响港股大门;智谱 GLM-4.7 开源
人工智能·ai资讯
0x00071 小时前
进击的智谱 - GLM 4.7 双旦大礼
人工智能