图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。

当然,模型整体结构就是并列双分支,如果只是这些内容,不值得拿出来讲。

主要有意思的部分是其融合两分支的多标签召回模块(multilabel recall loss module,简称MRL)。

1,模型整体结构

按照原文的说法,该论文提出了一个双分支的模型结构,其中一个分支是基于ConvNext,一个是是UNet分支。(其实该模型的ConvNext分支也是个类似UNet的结构,先编码再解码。)基于ConvNext的分支负责提取全局特征,而UNet分支负责提取局部特征。两种特征结合从而提升医学图像分割能力。

2,多标签召回模块(MRL)

2.1 提出MRL模块的两个目的:

1)解决类别不平衡问题

2)解决两个分支的异构性问题。两个分支提取的特征和提取出的特征具有显著差异,直接融合,效果并非最优。

2.2 实现方式

MRL模块引入了召回损失,公式如下:

其中,C是像素的类别数,在一般医学图像分割中都是2,也就是前景和背景。指的是c类的几何平均置信度,指的是输入在所有类上的预测softmax分布。是类别c的召回值。

这个召回损失可以在迭代训练的过程中根据该轮训练中的召回表现动态调整,从而实现动态加权,这样就可以解决类别不平衡的问题。

相关推荐
IT_陈寒7 分钟前
React性能翻倍!90%开发者忽略的5个Hooks最佳实践
前端·人工智能·后端
大任视点9 分钟前
消费电子PCB需求激增,科翔股份发力AI手机终端大周期
人工智能·智能手机
Learn Beyond Limits13 分钟前
Correlation vs Cosine vs Euclidean Distance|相关性vs余弦相似度vs欧氏距离
人工智能·python·神经网络·机器学习·ai·数据挖掘
晨非辰2 小时前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
2301_812914872 小时前
简单神经网络
人工智能·深度学习·神经网络
koo3643 小时前
pytorch环境配置
人工智能·pytorch·python
模型启动机7 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***1957 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG8 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q7848 小时前
深度学习技术
人工智能·深度学习