图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。

当然,模型整体结构就是并列双分支,如果只是这些内容,不值得拿出来讲。

主要有意思的部分是其融合两分支的多标签召回模块(multilabel recall loss module,简称MRL)。

1,模型整体结构

按照原文的说法,该论文提出了一个双分支的模型结构,其中一个分支是基于ConvNext,一个是是UNet分支。(其实该模型的ConvNext分支也是个类似UNet的结构,先编码再解码。)基于ConvNext的分支负责提取全局特征,而UNet分支负责提取局部特征。两种特征结合从而提升医学图像分割能力。

2,多标签召回模块(MRL)

2.1 提出MRL模块的两个目的:

1)解决类别不平衡问题

2)解决两个分支的异构性问题。两个分支提取的特征和提取出的特征具有显著差异,直接融合,效果并非最优。

2.2 实现方式

MRL模块引入了召回损失,公式如下:

其中,C是像素的类别数,在一般医学图像分割中都是2,也就是前景和背景。指的是c类的几何平均置信度,指的是输入在所有类上的预测softmax分布。是类别c的召回值。

这个召回损失可以在迭代训练的过程中根据该轮训练中的召回表现动态调整,从而实现动态加权,这样就可以解决类别不平衡的问题。

相关推荐
陈文锦丫1 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
小毅&Nora2 小时前
【人工智能】【AI外呼】系统架构设计与实现详解
人工智能·系统架构·ai外呼
jianqiang.xue3 小时前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
Coding茶水间4 小时前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
weixin79893765432...4 小时前
Vue + Express + DeepSeek 实现一个简单的对话式 AI 应用
vue.js·人工智能·express
nju_spy4 小时前
ToT与ReAct:突破大模型推理能力瓶颈
人工智能·大模型·大模型推理·tot思维树·react推理行动·人工智能决策·ai推理引擎
AI-智能4 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
y***86695 小时前
C机器学习.NET生态库应用
人工智能·机器学习
deng12045 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
ChoSeitaku5 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵