【25届秋招】饿了么0817算法岗笔试

目录

  • [1. 第一题](#1. 第一题)
  • [2. 第二题](#2. 第二题)
  • [3. 第三题](#3. 第三题)

⏰ 时间:2024/08/17
🔄 输入输出:ACM格式
⏳ 时长:100min

本试卷还有单选和多选部分,但这部分比较简单就不再展示。

最近终于有时间继续整理之前的笔试题了,因为时间仓促,难免有错误的地方,如有遇到欢迎在评论区指出。

饿了么这次笔试的时间还是比较仓促的,完成选择题后,留给三道编程题的时间就不多了。

1. 第一题

给定一个长度为 n n n 且仅由 0 0 0、 1 1 1 两种字符构成的字符串 s s s。每次操作你都可以选择字符串 s s s 的任意一个字符,并将其反置。

询问经过恰好 k k k 次操作后,字符串 s s s 是否为一个回文字符串。

若当前字符为 0 0 0,反置后为 1 1 1。若当前字符为 1 1 1,反置后为 0 0 0。

一个字符串被称作回文字符串,当且仅当这个字符串从左往右读和从右往左读都是相同的。

输入描述

每个测试文件均包含多组测试数据。第一行输入一个整数 T   ( 1 ≤ T ≤ 100 ) T\,(1\leq T\leq100) T(1≤T≤100) 代表数据组数,每组测试数据描述如下:

第一行输入两个整数 n , k   ( 1 ≤ n ≤ 1000 ,   0 ≤ k ≤ n ) n,k\,(1\leq n\leq1000,\,0\leq k\leq n) n,k(1≤n≤1000,0≤k≤n)。

第二行输入一个长度为 n n n 且仅由 0 0 0、 1 1 1 两种字符构成的字符串 s s s。

输出描述

对于每一组测试数据,如果经过怡好 k k k 次操作后,字符串 s s s 可以成为一个回文字符串,在一行上输出 YES;否则,直接输出 NO

题解

首先我们需要统计将字符串 s s s 转化为回文串所需的最少操作次数 ,记为 c c c。具体来说,可以通过双指针遍历,计算出对应位置的字符不同的次数,这就是需要改变的字符对数。

然后我们考虑以下两种情况:

  1. 当 k < c k<c k<c:显然无法在给定的操作次数内将字符串变为回文串,输出 "NO"。
  2. 当 k ≥ c k\geq c k≥c :此时,我们需要考虑多余的操作次数 k − c k-c k−c:
    • 字符串长度为奇数:由于中间字符不影响回文性,因此我们可以通过多余的操作次数调整中间字符,从而总是能变成回文串,输出 "YES"。
    • 字符串长度为偶数 :为了保证能够最终形成回文串,剩余操作次数 k − c k-c k−c 必须为偶数(每次操作可以对称改变两边的字符),否则输出 "NO"。
cpp 复制代码
#include <bits/stdc++.h>

using namespace std;

int ops(const string &s) {
    int left = 0, right = s.size() - 1;
    int changes = 0;
    
    while (left < right) {
        if (s[left] != s[right]) {
            changes++;
        }
        left++;
        right--;
    }
    
    return changes;
}

void solve() {
    int n, k;
    cin >> n >> k;

    string s;
    cin >> s;

    int changes = ops(s);

    if (changes > k) {
        cout << "NO" << endl;
    } else if ((k - changes) % 2 == 0 || n % 2 == 1) {
        cout << "YES" << endl;
    } else {
        cout << "NO" << endl;
    }
}

int main() {
    int t;
    cin >> t;

    while (t--) {
        solve();
    }
    
    return 0;
}

2. 第二题

有一个 n n n 行 n n n 列的棋盘,每个格子上写着数字 0 0 0 或 1 1 1。有一个小球从某个格子出发,移动到写着 0 0 0 的格子时会向下移动一格,移动到写着 1 1 1 的格子时会向右移动一格,直到滚出棋盘边界。

现在有 9 9 9 个询问,每次询问在子矩阵 ( x 1 , y 1 ) ∼ ( x 2 , y 2 ) (x_1,y_1)\sim(x_2,y_2) (x1,y1)∼(x2,y2) 中,小球从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 出发开始滚动,最后会从哪个格子滚出子矩阵 ( x 1 , y 1 ) ∼ ( x 2 , y 2 ) (x_1,y_1)\sim(x_2,y_2) (x1,y1)∼(x2,y2)。

从某个格子滚出子矩阵 ( x 1 , y 1 ) ∼ ( x 2 , y 2 ) (x_1,y_1)\sim(x_2,y_2) (x1,y1)∼(x2,y2),意思是当前所在的格子在子矩阵内,但是小球滚动路径的下一个格子不在子矩阵内,视为滚出。

从棋盘 ( x , y ) (x,y) (x,y) 向右滚动一格即抵达 ( x , y + 1 ) (x,y+1) (x,y+1),从棋盘 ( x , y ) (x,y) (x,y) 向下滚动一格即抵达 ( x + 1 , y ) (x+1,y) (x+1,y)。

输入描述

第一行输入一个整数 n   ( 1 ≤ n ≤ 500 ) n\,(1\leq n\leq 500) n(1≤n≤500) 代表棋盘大小。

此后 n n n 行,每行输入 n n n 个整数 a 1 , a 2 , . . . , a n   ( 0 ≤ a i ≤ 1 ) a_1,a_2,...,a_n\,(0\leq a_i\leq 1) a1,a2,...,an(0≤ai≤1) 代表棋盘上每个格子上写的数字。

第 n + 2 n+2 n+2 行输入一个整数 q   ( 1 ≤ q ≤ 2 ⋅ 1 0 5 ) q\,(1\leq q\leq 2\cdot 10^5) q(1≤q≤2⋅105) 代表询问次数。

随后 q q q 行,每行输入四个整数 x 1 , y 1 , x 2 , y 2   ( 1 ≤ x 1 , x 2 , y 1 , y 2 ≤ n , x 1 ≤ x 2 , y 1 ≤ y 2 ) x_1,y_1,x_2,y_2\,(1\leq x_1,x_2,y_1,y_2\leq n,x_1\leq x_2,y_1\leq y_2) x1,y1,x2,y2(1≤x1,x2,y1,y2≤n,x1≤x2,y1≤y2) 代表子矩阵范围。

输出描述

对于每一次询问,在一行上输出两个整数,代表小球滚出的位置。

题解

直接模拟的时间复杂度为 O ( q n ) O(qn) O(qn),看似会超时,但实际并不会。

cpp 复制代码
#include <bits/stdc++.h>

using namespace std;

void query(const vector<vector<int>>& board) {
    int x1, y1, x2, y2;
    cin >> x1 >> y1 >> x2 >> y2;

    int cx = x1, cy = y1, last_cx = cx, last_cy = cy;
    while (cx >= x1 && cx <= x2 && cy >= y1 && cy <= y2) {
        last_cx = cx;
        last_cy = cy;
        if (board[cx][cy]) cy++;
        else cx++;
    }

    cout << last_cx << ' ' << last_cy << endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n;
    cin >> n;

    vector<vector<int>> board(n + 1, vector<int>(n + 1));
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            cin >> board[i][j];
        }
    }

    int q;
    cin >> q;

    while (q--) {
        query(board);
    }

    return 0;
}

3. 第三题

给出一张由几个点 m m m 条带边权的边构成的无向连通图,你有恰好 k k k 次机会,选择一条边使得其边权 + 1 +1 +1。在 k k k 次操作全部完成后,你要选出一个合法的生成树,使得这棵生成树中:边权最小的边最大。

输出这个边权。

对于一张图,选择其中 n − 1 n-1 n−1 条边,使得所有顶点联通,这些边一定会组成一棵树,即为这张图的一棵生成树。可以证明,图中存在至少一棵生成树。

输入描述

第一行输入三个整数 n , m , k   ( 1 ≤ n , m ≤ 1 0 5 , 1 ≤ k ≤ 1 0 14 ) n,m,k\,(1\leq n,m\leq 10^5,1\leq k\leq 10^{14}) n,m,k(1≤n,m≤105,1≤k≤1014) 代表给定图的点数、边数和你的操作次数。

此后 m m m 行,第 i i i 行输入三个整数 a i , b i , c i ( 1 ≤ a i , b i ≤ n ; 1 ≤ c i ≤ 1 0 14 ) a_i,b_i,c_i(1\leq a_i,b_i\leq n;1\leq c_i\leq 10^{14}) ai,bi,ci(1≤ai,bi≤n;1≤ci≤1014) 代表图上第 i i i 条边连接节点 a i a_i ai 和 b i b_i bi,且边权为 c i c_i ci。保证图联通,没有重边。

输出描述

在一行上输出一个整数,代表全部生成树中、边权最小的边最大的那棵树,它的边权最小的边。

题解

先通过 Kruskal 算法求解最大生成树。为此,我们将图中的边按权值从大到小排序,然后依次选择不形成环的边加入生成树。得到最大生成树后,我们面临的问题是如何通过最多 k 次操作,将这些边中的最小边权尽量提高。考虑使用二分查找。二分查找的对象是最小边权的下界,假设当前下界为 mid,我们计算将所有生成树边的权值提升到至少 mid 所需的操作次数。如果这些操作次数不超过 k,说明 mid 是可行的,我们可以尝试更大的下界;否则,需要降低下界。最终,二分查找得到的值就是所有生成树中边权最小的最大值。

cpp 复制代码
#include <bits/stdc++.h>

using namespace std;

using i64 = long long;

struct UnionFind {
    vector<int> p;

    UnionFind(int n) : p(n) {
        iota(p.begin(), p.end(), 0);
    }

    int find(int x) {
        return p[x] == x ? x : (p[x] = find(p[x]));
    }

    bool unite(int x, int y) {
        int root_x = find(x);
        int root_y = find(y);
        if (root_x != root_y) {
            p[root_x] = root_y;
            return true;
        }
        return false;
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n, m;
    i64 k;
    cin >> n >> m >> k;

    vector<array<i64, 3>> edges(m);
    for (auto& [u, v, w] : edges) {
        cin >> u >> v >> w;
        --u;
        --v;
    }

    sort(edges.begin(), edges.end(), [](const auto& lhs, const auto& rhs) {
        return lhs[2] > rhs[2];
    });

    UnionFind uf(n);
    vector<i64> tree_edges;

    // 使用Kruskal算法构建最大生成树
    for (const auto& [u, v, w] : edges) {
        if (uf.unite(u, v)) {
            tree_edges.push_back(w);
        }
    }

    // 二分查找最小可能的边权
    i64 left = *min_element(tree_edges.begin(), tree_edges.end());
    i64 right = 1e14 + k;

    while (left < right) {
        i64 mid = left + (right - left + 1) / 2;
        i64 required = 0;

        // 计算需要多少次操作才能将所有边权提升到至少 mid
        for (i64 w : tree_edges) {
            required += max(0LL, mid - w);
            if (required > k) break; 
        }

        if (required <= k) left = mid;
        else right = mid - 1;
    }

    cout << left << "\n";

    return 0;
}
相关推荐
今天吃饺子2 分钟前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
是阿建吖!3 分钟前
【优选算法】二分查找
c++·算法
王燕龙(大卫)7 分钟前
leetcode 数组中第k个最大元素
算法·leetcode
不去幼儿园1 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
Mr_Xuhhh1 小时前
重生之我在学环境变量
linux·运维·服务器·前端·chrome·算法
Ajiang28247353042 小时前
对于C++中stack和queue的认识以及priority_queue的模拟实现
开发语言·c++
盼海2 小时前
排序算法(五)--归并排序
数据结构·算法·排序算法
网易独家音乐人Mike Zhou5 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
‘’林花谢了春红‘’7 小时前
C++ list (链表)容器
c++·链表·list
机器视觉知识推荐、就业指导8 小时前
C++设计模式:建造者模式(Builder) 房屋建造案例
c++