【机器学习】3. 欧式距离,曼哈顿距离,Minkowski距离,加权欧式距离

Euclidean - L2 norm L2范数

D ( A , B ) = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 + . . . D(A,B) = \sqrt{(a_1-b_1)^2+(a_2-b_2)^2 + ...} D(A,B)=(a1−b1)2+(a2−b2)2+...

Manhattan

D ( A , B ) = ∣ a 1 − b 1 ∣ + ∣ a 2 − b 2 ∣ + . . . D(A,B) = \sqrt{|a_1-b_1|+|a_2-b_2| + ...} D(A,B)=∣a1−b1∣+∣a2−b2∣+...

Euclidean欧式距离 是直接距离, Manhattan不能走斜线,只能走直线,所以是绝对值的和。

由于 Manhattan distance可以看成是直角三角形的直角边,Euclidean distance可以看成是斜边,所以Manhattan distance >= Eculidean distance.

Minkowski distance

D ( A , B ) = ( ( a 1 − b 1 ) q + ( a 2 − b 2 ) q + . . . ) 1 / q D(A,B) = ((a_1-b_1)^q+(a_2-b_2)^q + ...)^{1/q} D(A,B)=((a1−b1)q+(a2−b2)q+...)1/q

Minkowski distance 是上面两种距离的变型。

Weighted Euclidean

D ( A , B ) = w 1 ( a 1 − b 1 ) 2 + w 2 ( a 2 − b 2 ) 2 + . . . D(A,B) = \sqrt {w_1(a_1-b_1)^2+w_2(a_2-b_2)^2 + ...} D(A,B)=w1(a1−b1)2+w2(a2−b2)2+...

Weighted Distance

权重对比,比如权重取:
1 d 2 \frac{1}{d^2} d21

为什么需要权重呢?这里举一个KNN的例子,在KNN中,我们将距离最近的几个数据中的众数作为最终结果。如果直接使用欧氏距离,会有一个弊端,如下图。

假设我们求黑点的预测值,K是3,1,2,3代表了最近的三个点。 根据我们肉眼判断,黑点应该属于蓝色更加合理,但是传统KNN判断最近的是2个红色,一个蓝色,会将这个黑点划分到红点中。

而权重很好的解决了这个问题,距离更近的权重越大。

例如,黑点到蓝点的距离是1,到两个红点的距离是3。

1/ 1^2 > 1/3^2 + 1/3^2

最后结果是这样的,由于1 > 2/9, 结果判断为蓝色。

相关推荐
wuhanwhite1 小时前
2025:OpenAI的“七十二变”?
人工智能·openai·语音识别
懒大王爱吃狼2 小时前
Python 向量检索库Faiss使用
开发语言·python·自动化·python基础·python教程
XianxinMao2 小时前
BitNet a4.8:通过4位激活实现1位大语言模型的高效内存推理
人工智能·语言模型·自然语言处理
一水鉴天2 小时前
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之11 方案再探之2 项目文件(修改稿1)
人工智能
KeyPan2 小时前
【视觉SLAM:八、后端Ⅰ】
人工智能·数码相机·算法·机器学习·计算机视觉
StarCap2 小时前
【论文阅读】Reducing Activation Recomputation in Large Transformer Models
论文阅读·深度学习·transformer
好评笔记3 小时前
多模态论文笔记——Coca(副)
论文阅读·人工智能·深度学习·计算机视觉·transformer·coca·dalle2
好评笔记3 小时前
多模态论文笔记——Coca
人工智能·深度学习·计算机视觉·aigc·transformer·多模态·coca
何大春3 小时前
Quo Vadis, Anomaly Detection? LLMs and VLMs in the Spotlight 论文阅读
论文阅读·人工智能·深度学习·论文笔记
Jackilina_Stone3 小时前
【论文阅读笔记】SCI算法与代码 | 低照度图像增强 | 2022.4.21
论文阅读·人工智能·笔记·python·算法·计算机视觉