基于Spark计算网络图中节点之间的Jaccard相似性

基于Spark计算网络图中节点之间的Jaccard相似性

Jaccard 相似度是一种较为常用的衡量两个集合相似性的指标,用于计算两个集合的交集与并集的比率。具体来说,它的计算公式为:

在网络图中同样经常使用Jaccard来计算节点之间的相似性,对于图中的每个节点,收集其邻居节点作为一个集合,然后不同节点之间使用对应的集合计算节点之间的相似性。这种计算方式考虑的是节点的局部结构,即节点的直接邻居关系。如果两个节点具有较高的 Jaccard 相似度,意味着它们有较多的共同邻居,表明它们在图中的局部结构上非常相似。

Jaccard计算简单,易于理解和实现,在推荐系统(在社交网络或电商平台中,可以使用 Jaccard 相似度来推荐好友或商品。例如,在社交网络中,具有共同好友的用户可能更容易成为朋友。)或是社区发现(在网络图中,相似度较高的节点可能属于同一社区或群体。通过计算节点对之间的 Jaccard 相似度,可以辅助发现社区结构或群体。)等领域都有广泛应用。

文章目录


一、使用Jaccard相似性计算网络图中节点相似性的实现流程

  • 收集所有指向节点的邻居节点(in-degree)
  • 收集所有由节点指出的邻居节点(out-degree)
  • 拼接in-degree和out-degree,获取节点所有的邻居节点
  • 词袋模型编码,为每个节点生成一个特征集合,方便后续使用Spark自带的MinHashLSH方法加速节点相似度的计算
  • MinHash计算节点之间的相似度,得到最终计算结果

二、什么是MinHashLSH

什么是MinHashLSH

三、完整代码(基于Scala)

完整代码(基于Scala)


总结

相关推荐
夏鹏今天学习了吗4 小时前
【LeetCode热题100(82/100)】单词拆分
算法·leetcode·职场和发展
mit6.8244 小时前
mysql exe
算法
2501_901147835 小时前
动态规划在整除子集问题中的应用与高性能实现分析
算法·职场和发展·动态规划
中草药z5 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派5 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
非凡ghost5 小时前
Wireshark中文版(网络抓包工具)
网络·windows·学习·测试工具·wireshark·软件需求
DisonTangor5 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
ADI_OP6 小时前
ADAU1452的开发教程10:逻辑算法模块
算法·adi dsp中文资料·adi dsp·adi音频dsp·adi dsp开发教程·sigmadsp的开发详解
xingzhemengyou16 小时前
C语言 查找一个字符在字符串中第i次出现的位置
c语言·算法
科技块儿6 小时前
使用强大的离线IP地址定位库IP数据云获取数据信息
网络·tcp/ip·php