【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。

Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数据(Alpaca-52K)用于训练。

据说,这个训练成本不到600美元。那这个成本是如何计算的呢?
训练成本 :在8个80GB A100 上训练了3个小时,不到100美元;
数据成本 :生成数据使用OpenAl的API,500美元。这里就是通过使用 Self-Instruct 方法,使用了OpenAl的接口的调用成本。

在前面文章《英伟达ChipNeMo,一个领域大模型的训练案例》里,介绍了领域大模型的训练过程。如下图:

对应的训练时长为:

使用 128 个 A100 GPU 进行了训练。ChipNeMo 的领域适配预训练成本(包括基于领域数据的继续预训练和SFT),具体见下表,单位是A100 GPU hours

ChipNeMo 的领域适配预训练成本,对比从头开始预训练基础模型的总成本不到 1.5%。

以LLaMa 7B模型的训练来说,总训练时长=2710,按照前面"在8个80GB A100 上训练了3个小时,不到100美元"的成本折算,成本应该小于11300美金

13B模型,总训练时长=5100,成本应该小于21250美金

70B模型,总训练时长=21340,成本应该小于88920美金

至于数据,ChipNeMo 的领域适配预训练需要24B以上的数据,这个可能与相应的数据积累有很大关系,不好计算了。

相关推荐
救救孩子把1 分钟前
50-机器学习与大模型开发数学教程-4-12 Bootstrap方法
人工智能·机器学习·bootstrap
非凡ghost9 分钟前
CoolUtils PDF Combine(PDF合并工具)
windows·学习·pdf·软件需求
阿W呀12 分钟前
【光的偏振与光功率 / 能量测量学习笔记】
学习
趣知岛28 分钟前
AI是否能代替从业者
人工智能
allan bull1 小时前
在节日中寻找平衡:圣诞的欢乐与传统节日的温情
人工智能·学习·算法·职场和发展·生活·求职招聘·节日
土豆12501 小时前
程序员约会指南:从代码到爱情的完美编译
人工智能
Coder_Boy_1 小时前
SpringAI与LangChain4j的智能应用-(实践篇2)
人工智能·springboot·aiops·langchain4j
love530love1 小时前
【笔记】ComfyUI “OSError: [WinError 38] 已到文件结尾” 报错解决方案
人工智能·windows·python·aigc·comfyui·winerror 38
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [fs]fs-writeback
linux·笔记·学习
咕噜企业分发小米1 小时前
腾讯云向量数据库HNSW索引如何更新?
人工智能·算法·腾讯云