【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。

Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数据(Alpaca-52K)用于训练。

据说,这个训练成本不到600美元。那这个成本是如何计算的呢?
训练成本 :在8个80GB A100 上训练了3个小时,不到100美元;
数据成本 :生成数据使用OpenAl的API,500美元。这里就是通过使用 Self-Instruct 方法,使用了OpenAl的接口的调用成本。

在前面文章《英伟达ChipNeMo,一个领域大模型的训练案例》里,介绍了领域大模型的训练过程。如下图:

对应的训练时长为:

使用 128 个 A100 GPU 进行了训练。ChipNeMo 的领域适配预训练成本(包括基于领域数据的继续预训练和SFT),具体见下表,单位是A100 GPU hours

ChipNeMo 的领域适配预训练成本,对比从头开始预训练基础模型的总成本不到 1.5%。

以LLaMa 7B模型的训练来说,总训练时长=2710,按照前面"在8个80GB A100 上训练了3个小时,不到100美元"的成本折算,成本应该小于11300美金

13B模型,总训练时长=5100,成本应该小于21250美金

70B模型,总训练时长=21340,成本应该小于88920美金

至于数据,ChipNeMo 的领域适配预训练需要24B以上的数据,这个可能与相应的数据积累有很大关系,不好计算了。

相关推荐
IT_陈寒5 分钟前
Vue 3性能优化实战:7个关键技巧让我的应用加载速度提升50%
前端·人工智能·后端
deng-c-f6 分钟前
Linux C/C++ 学习日记(47):dpdk(八):UDP的pps测试:内核 VS dpdk
学习
【赫兹威客】浩哥9 分钟前
基于 YOLO11+PyQt6+OpenCV 的智能水果检测系统设计与实现
人工智能·opencv·计算机视觉
RPA机器人就用八爪鱼14 分钟前
RPA:企业数字化转型的高效自动化利器
人工智能
程序员-小李15 分钟前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python
d111111111d16 分钟前
STM32外设学习--TIM定时器--编码器接口
stm32·嵌入式硬件·学习
喜欢吃燃面17 分钟前
Linux:make自动化和实战演练
linux·学习
掘金安东尼20 分钟前
AI 生成代码,从 Copilot 到 Claude Code 的全景测评
人工智能
说私域26 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的赛道力构建与品牌发展研究
人工智能·小程序
喜欢吃豆1 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp