【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。

Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数据(Alpaca-52K)用于训练。

据说,这个训练成本不到600美元。那这个成本是如何计算的呢?
训练成本 :在8个80GB A100 上训练了3个小时,不到100美元;
数据成本 :生成数据使用OpenAl的API,500美元。这里就是通过使用 Self-Instruct 方法,使用了OpenAl的接口的调用成本。

在前面文章《英伟达ChipNeMo,一个领域大模型的训练案例》里,介绍了领域大模型的训练过程。如下图:

对应的训练时长为:

使用 128 个 A100 GPU 进行了训练。ChipNeMo 的领域适配预训练成本(包括基于领域数据的继续预训练和SFT),具体见下表,单位是A100 GPU hours

ChipNeMo 的领域适配预训练成本,对比从头开始预训练基础模型的总成本不到 1.5%。

以LLaMa 7B模型的训练来说,总训练时长=2710,按照前面"在8个80GB A100 上训练了3个小时,不到100美元"的成本折算,成本应该小于11300美金

13B模型,总训练时长=5100,成本应该小于21250美金

70B模型,总训练时长=21340,成本应该小于88920美金

至于数据,ChipNeMo 的领域适配预训练需要24B以上的数据,这个可能与相应的数据积累有很大关系,不好计算了。

相关推荐
新缸中之脑3 分钟前
Tripo AI:构建游戏就绪的3D资产
人工智能·游戏·3d
Coder_Boy_4 分钟前
Java高级_资深_架构岗 核心知识点——高并发模块(底层+实践+最佳实践)
java·开发语言·人工智能·spring boot·分布式·微服务·架构
AC赳赳老秦10 分钟前
2026 AI原生开发工具链趋势:DeepSeek与主流IDE深度联动实践指南
运维·ide·人工智能·架构·prometheus·ai-native·deepseek
Dr.AE17 分钟前
深小i 产品分析报告
大数据·人工智能·政务
吾在学习路17 分钟前
AoP-SAM: Automation of Prompts for Efficient Segmentation
人工智能·深度学习·算法·计算机视觉
新缸中之脑24 分钟前
顶级视频生成模型 (2026)
人工智能
技术宅学长28 分钟前
Router门控网络简单介绍
人工智能·深度学习
健康平安的活着30 分钟前
AI之Toolcalling的使用案例(langchain4j+springboot)
人工智能·spring boot·后端
2501_9269783334 分钟前
大模型“脱敏--加密”--“本地轻头尾运算--模型重运算”
人工智能·经验分享·架构
冰西瓜60040 分钟前
深度学习的数学原理(十二)—— CNN的反向传播
人工智能·深度学习·cnn