【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。

Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数据(Alpaca-52K)用于训练。

据说,这个训练成本不到600美元。那这个成本是如何计算的呢?
训练成本 :在8个80GB A100 上训练了3个小时,不到100美元;
数据成本 :生成数据使用OpenAl的API,500美元。这里就是通过使用 Self-Instruct 方法,使用了OpenAl的接口的调用成本。

在前面文章《英伟达ChipNeMo,一个领域大模型的训练案例》里,介绍了领域大模型的训练过程。如下图:

对应的训练时长为:

使用 128 个 A100 GPU 进行了训练。ChipNeMo 的领域适配预训练成本(包括基于领域数据的继续预训练和SFT),具体见下表,单位是A100 GPU hours

ChipNeMo 的领域适配预训练成本,对比从头开始预训练基础模型的总成本不到 1.5%。

以LLaMa 7B模型的训练来说,总训练时长=2710,按照前面"在8个80GB A100 上训练了3个小时,不到100美元"的成本折算,成本应该小于11300美金

13B模型,总训练时长=5100,成本应该小于21250美金

70B模型,总训练时长=21340,成本应该小于88920美金

至于数据,ChipNeMo 的领域适配预训练需要24B以上的数据,这个可能与相应的数据积累有很大关系,不好计算了。

相关推荐
深圳多奥智能一卡(码、脸)通系统3 分钟前
智能二维码QR\刷IC卡\人脸AI识别梯控系统功能设计需基于模块化架构,整合物联网、生物识别、权限控制等技术,以下是多奥分层次的系统设计框架
人工智能·门禁·电梯门禁·二维码梯控·梯控·电梯
批量小王子6 分钟前
2025-08-19利用opencv检测图片中文字及图片的坐标
人工智能·opencv·计算机视觉
firshman_start22 分钟前
文件包含的学习笔记
笔记·学习
没有梦想的咸鱼185-1037-16631 小时前
SWMM排水管网水力、水质建模及在海绵与水环境中的应用
数据仓库·人工智能·数据挖掘·数据分析
codeyanwu1 小时前
nanoGPT 部署
python·深度学习·机器学习
即兴小索奇1 小时前
【无标题】
人工智能·ai·商业·ai商业洞察·即兴小索奇
月盈缺1 小时前
学习嵌入式的第二十四天——数据结构——队列和树
数据结构·学习
国际学术会议-杨老师1 小时前
2025年计算机视觉与图像国际会议(ICCVI 2025)
人工智能·计算机视觉
rainy雨2 小时前
学习方法①
学习
欧阳小猜2 小时前
深度学习②【优化算法(重点!)、数据获取与模型训练全解析】
人工智能·深度学习·算法