【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。

Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数据(Alpaca-52K)用于训练。

据说,这个训练成本不到600美元。那这个成本是如何计算的呢?
训练成本 :在8个80GB A100 上训练了3个小时,不到100美元;
数据成本 :生成数据使用OpenAl的API,500美元。这里就是通过使用 Self-Instruct 方法,使用了OpenAl的接口的调用成本。

在前面文章《英伟达ChipNeMo,一个领域大模型的训练案例》里,介绍了领域大模型的训练过程。如下图:

对应的训练时长为:

使用 128 个 A100 GPU 进行了训练。ChipNeMo 的领域适配预训练成本(包括基于领域数据的继续预训练和SFT),具体见下表,单位是A100 GPU hours

ChipNeMo 的领域适配预训练成本,对比从头开始预训练基础模型的总成本不到 1.5%。

以LLaMa 7B模型的训练来说,总训练时长=2710,按照前面"在8个80GB A100 上训练了3个小时,不到100美元"的成本折算,成本应该小于11300美金

13B模型,总训练时长=5100,成本应该小于21250美金

70B模型,总训练时长=21340,成本应该小于88920美金

至于数据,ChipNeMo 的领域适配预训练需要24B以上的数据,这个可能与相应的数据积累有很大关系,不好计算了。

相关推荐
盐焗西兰花6 分钟前
鸿蒙学习实战之路 - 图片预览功能实现
学习·华为·harmonyos
新知图书13 分钟前
FastGPT简介
人工智能·ai agent·智能体·大模型应用开发·大模型应用
Xudde.26 分钟前
friendly2靶机渗透
笔记·学习·安全·web安全·php
知识分享小能手37 分钟前
CentOS Stream 9入门学习教程,从入门到精通, CentOS Stream 9 命令行基础 —语法知识点与实战详解(4)
linux·学习·centos
Dev7z42 分钟前
基于Matlab卷积神经网络的交通警察手势识别方法研究与实现
人工智能·神经网络·cnn
码界奇点44 分钟前
Java Web学习 第15篇jQuery从入门到精通的万字深度解析
java·前端·学习·jquery
元拓数智1 小时前
IntaLink:破解数仓建设痛点,重塑高效建设新范式
大数据·数据仓库·人工智能·数据关系·intalink
区块链小八歌1 小时前
从电商收入到链上资产:Liquid Royalty在 Berachain 重塑 RWA 想象力
大数据·人工智能·区块链
车载测试工程师1 小时前
CAPL学习-ETH功能函数-通用函数
网络·学习·tcp/ip·capl·canoe