【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。

Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数据(Alpaca-52K)用于训练。

据说,这个训练成本不到600美元。那这个成本是如何计算的呢?
训练成本 :在8个80GB A100 上训练了3个小时,不到100美元;
数据成本 :生成数据使用OpenAl的API,500美元。这里就是通过使用 Self-Instruct 方法,使用了OpenAl的接口的调用成本。

在前面文章《英伟达ChipNeMo,一个领域大模型的训练案例》里,介绍了领域大模型的训练过程。如下图:

对应的训练时长为:

使用 128 个 A100 GPU 进行了训练。ChipNeMo 的领域适配预训练成本(包括基于领域数据的继续预训练和SFT),具体见下表,单位是A100 GPU hours

ChipNeMo 的领域适配预训练成本,对比从头开始预训练基础模型的总成本不到 1.5%。

以LLaMa 7B模型的训练来说,总训练时长=2710,按照前面"在8个80GB A100 上训练了3个小时,不到100美元"的成本折算,成本应该小于11300美金

13B模型,总训练时长=5100,成本应该小于21250美金

70B模型,总训练时长=21340,成本应该小于88920美金

至于数据,ChipNeMo 的领域适配预训练需要24B以上的数据,这个可能与相应的数据积累有很大关系,不好计算了。

相关推荐
飞哥数智坊8 分钟前
告别繁琐部署:TRAE SOLO 帮我一键跑通 Z-Image 模型
人工智能·trae·solo
学历真的很重要23 分钟前
Hello-Agents —— 03大语言模型基础 通俗总结
开发语言·人工智能·后端·语言模型·自然语言处理·面试·langchain
im_AMBER1 小时前
Leetcode 63 定长子串中元音的最大数目
c++·笔记·学习·算法·leetcode
"菠萝"1 小时前
C#知识学习-020(访问关键字)
开发语言·学习·c#
●VON1 小时前
Electron 项目在“鸿蒙端”与“桌面端”运行的区别
javascript·学习·electron·openharmony
OpenCSG1 小时前
OpenCSG 2025年11月月报:智能体平台、AI技术合作与开源生态进展
人工智能·开源·opencsg·csghub
围炉聊科技2 小时前
当AI成为“大脑”:人类如何在机器时代找到不可替代的价值?
人工智能
لا معنى له2 小时前
残差网络论文学习笔记:Deep Residual Learning for Image Recognition全文翻译
网络·人工智能·笔记·深度学习·学习·机器学习
菜只因C2 小时前
深度学习:从技术本质到未来图景的全面解析
人工智能·深度学习
工业机器视觉设计和实现2 小时前
lenet改vgg训练cifar10突破71分
人工智能·机器学习