爆改YOLOv8 | yolov8添加MSDA注意力机制

1,本文介绍

MSDA(多尺度扩张注意力)模块通过自注意力机制在不同尺度上有效地捕捉特征的稀疏性。它首先通过线性投影生成特征图 (X) 的查询、键和值。然后,将特征图的通道划分为 (n) 个头部,在每个头部中使用不同的扩张率进行多尺度的自注意力操作。具体来说,MSDA按以下步骤操作:对每个头部 (i) 进行自注意力处理,并将所有头部的输出连接在一起,之后通过线性层进行特征融合。通过为不同头部设置不同的扩张率,MSDA可以在关注的接收域内有效地聚合多尺度的语义信息,同时在避免复杂操作和额外计算成本的情况下,减少了自注意力机制的冗余。

MSDA模块的主要改进包括:

  1. 多尺度特征提取:通过不同头部的自注意力机制,MSDA能够捕捉到不同尺度的语义信息,这对于理解图像的不同抽象层次非常重要。

  2. 稀疏性利用:MSDA利用自注意力机制在不同尺度上的稀疏性,降低了计算冗余,同时保持了良好的性能。

  3. 头部通道分离:MSDA将特征图的通道分割为多个头部,每个头部处理不同的特征子集,这样可以并行处理,提升模型的学习能力和效率。

  4. 不同扩张率:通过在不同头部设置不同的扩张率,MSDA能够在各个头部关注不同尺度的特征,从而更全面地捕捉图像中的信息。

  5. 特征聚合:MSDA将各个头部的输出通过连接操作合并,并通过线性层进行特征聚合,整合各个头部学习到的信息,得到更丰富的特征表示。

关于MSDA的详细介绍可以看论文:https://arxiv.org/pdf/2302.01791.pdf

本文将讲解如何将MSDA融合进yolov8

话不多说,上代码!

2,将MSDA融合进YOLOv8

2.1 步骤一

首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个MSDA.py文件,文件名字可以根据你自己的习惯起,然后将MSDA的核心代码复制进去。

import torch
import torch.nn as nn
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
 
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)
 
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
 
 
class DilateAttention(nn.Module):
    "Implementation of Dilate-attention"
    def __init__(self, head_dim, qk_scale=None, attn_drop=0, kernel_size=3, dilation=1):
        super().__init__()
        self.head_dim = head_dim
        self.scale = qk_scale or head_dim ** -0.5
        self.kernel_size=kernel_size
        self.unfold = nn.Unfold(kernel_size, dilation, dilation*(kernel_size-1)//2, 1)
        self.attn_drop = nn.Dropout(attn_drop)
 
    def forward(self,q,k,v):
        #B, C//3, H, W
        B,d,H,W = q.shape
        q = q.reshape([B, d//self.head_dim, self.head_dim, 1 ,H*W]).permute(0, 1, 4, 3, 2)  # B,h,N,1,d
        k = self.unfold(k).reshape([B, d//self.head_dim, self.head_dim, self.kernel_size*self.kernel_size, H*W]).permute(0, 1, 4, 2, 3)  #B,h,N,d,k*k
        attn = (q @ k) * self.scale  # B,h,N,1,k*k
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        v = self.unfold(v).reshape([B, d//self.head_dim, self.head_dim, self.kernel_size*self.kernel_size, H*W]).permute(0, 1, 4, 3, 2)  # B,h,N,k*k,d
        x = (attn @ v).transpose(1, 2).reshape(B, H, W, d)
        return x
 
 
class MultiDilatelocalAttention(nn.Module):
    "Implementation of Dilate-attention"
 
    def __init__(self, dim, num_heads=8, qkv_bias=True, qk_scale=None,
                 attn_drop=0.,proj_drop=0., kernel_size=3, dilation=[1, 2, 3, 4]):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.dilation = dilation
        self.kernel_size = kernel_size
        self.scale = qk_scale or head_dim ** -0.5
        self.num_dilation = len(dilation)
        assert num_heads % self.num_dilation == 0, f"num_heads{num_heads} must be the times of num_dilation{self.num_dilation}!!"
        self.qkv = nn.Conv2d(dim, dim * 3, 1, bias=qkv_bias)
        self.dilate_attention = nn.ModuleList(
            [DilateAttention(head_dim, qk_scale, attn_drop, kernel_size, dilation[i])
             for i in range(self.num_dilation)])
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
    def forward(self, x):
        B, C, H, W = x.shape
        # x = x.permute(0, 3, 1, 2)# B, C, H, W
        y = x.clone()
        qkv = self.qkv(x).reshape(B, 3, self.num_dilation, C//self.num_dilation, H, W).permute(2, 1, 0, 3, 4, 5)
        #num_dilation,3,B,C//num_dilation,H,W
        y1 = y.reshape(B, self.num_dilation, C//self.num_dilation, H, W).permute(1, 0, 3, 4, 2 )
        # num_dilation, B, H, W, C//num_dilation
        for i in range(self.num_dilation):
            y1[i] = self.dilate_attention[i](qkv[i][0], qkv[i][1], qkv[i][2])# B, H, W,C//num_dilation
        y2 = y1.permute(1, 2, 3, 0, 4).reshape(B, H, W, C)
        y3 = self.proj(y2)
        y4 = self.proj_drop(y3).permute(0, 3, 1, 2)
        return y4
 
 
class DilateBlock(nn.Module):
    "Implementation of Dilate-attention block"
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False,qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm, kernel_size=3, dilation=[1, 2, 3],
                 cpe_per_block=False):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.mlp_ratio = mlp_ratio
        self.kernel_size = kernel_size
        self.dilation = dilation
        self.cpe_per_block = cpe_per_block
        if self.cpe_per_block:
            self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = MultiDilatelocalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                                                attn_drop=attn_drop, kernel_size=kernel_size, dilation=dilation)
 
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
 
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop)
 
    def forward(self, x):
        if self.cpe_per_block:
            x = x + self.pos_embed(x)
        x = x.permute(0, 2, 3, 1)
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.permute(0, 3, 1, 2)
        #B, C, H, W
        return x
 
 
class GlobalAttention(nn.Module):
    "Implementation of self-attention"
 
    def __init__(self, dim,  num_heads=8, qkv_bias=False,
                 qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
 
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
    def forward(self, x):
        B, H, W, C = x.shape
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
 
        x = (attn @ v).transpose(1, 2).reshape(B, H, W, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
 
 
class GlobalBlock(nn.Module):
    """
    Implementation of Transformer
    """
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False,qk_scale=None, drop=0.,
                 attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 cpe_per_block=False):
        super().__init__()
        self.cpe_per_block = cpe_per_block
        if self.cpe_per_block:
            self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = GlobalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias,
                              qk_scale=qk_scale, attn_drop=attn_drop)
 
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
 
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop)
 
    def forward(self, x):
        if self.cpe_per_block:
            x = x + self.pos_embed(x)
        x = x.permute(0, 2, 3, 1)
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.permute(0, 3, 1, 2)
        return x
 
 
class PatchEmbed(nn.Module):
    """Image to Patch Embedding.
    """
    def __init__(self, img_size=224, in_chans=3, hidden_dim=16,
                 patch_size=4, embed_dim=96, patch_way=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.num_patches = patches_resolution[0] * patches_resolution[1]
        self.img_size = img_size
        assert patch_way in ['overlaping', 'nonoverlaping', 'pointconv'],\
            "the patch embedding way isn't exist!"
        if patch_way == "nonoverlaping":
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        elif patch_way == "overlaping":
            self.proj = nn.Sequential(
                nn.Conv2d(in_chans, hidden_dim, kernel_size=3, stride=1,
                          padding=1, bias=False),  # 224x224
                nn.BatchNorm2d(hidden_dim),
                nn.GELU( ),
                nn.Conv2d(hidden_dim, int(hidden_dim*2), kernel_size=3, stride=2,
                          padding=1, bias=False),  # 112x112
                nn.BatchNorm2d(int(hidden_dim*2)),
                nn.GELU( ),
                nn.Conv2d(int(hidden_dim*2), int(hidden_dim*4), kernel_size=3, stride=1,
                          padding=1, bias=False),  # 112x112
                nn.BatchNorm2d(int(hidden_dim*4)),
                nn.GELU( ),
                nn.Conv2d(int(hidden_dim*4), embed_dim, kernel_size=3, stride=2,
                          padding=1, bias=False),  # 56x56
            )
        else:
            self.proj = nn.Sequential(
                nn.Conv2d(in_chans, hidden_dim, kernel_size=3, stride=2,
                          padding=1, bias=False),  # 112x112
                nn.BatchNorm2d(hidden_dim),
                nn.GELU( ),
                nn.Conv2d(hidden_dim, int(hidden_dim*2), kernel_size=1, stride=1,
                          padding=0, bias=False),  # 112x112
                nn.BatchNorm2d(int(hidden_dim*2)),
                nn.GELU( ),
                nn.Conv2d(int(hidden_dim*2), int(hidden_dim*4), kernel_size=3, stride=2,
                          padding=1, bias=False),  # 56x56
                nn.BatchNorm2d(int(hidden_dim*4)),
                nn.GELU( ),
                nn.Conv2d(int(hidden_dim*4), embed_dim, kernel_size=1, stride=1,
                          padding=0, bias=False),   # 56x56
            )
 
    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)  # B, C, H, W
        return x
 
 
class PatchMerging(nn.Module):
    """ Patch Merging Layer.
    """
    def __init__(self, in_channels, out_channels, merging_way, cpe_per_satge, norm_layer=nn.BatchNorm2d):
        super().__init__()
        assert merging_way in ['conv3_2', 'conv2_2', 'avgpool3_2', 'avgpool2_2'], \
            "the merging way is not exist!"
        self.cpe_per_satge = cpe_per_satge
        if merging_way == 'conv3_2':
            self.proj = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1),
                norm_layer(out_channels),
            )
        elif merging_way == 'conv2_2':
            self.proj = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=2, stride=2, padding=0),
                norm_layer(out_channels),
            )
        elif merging_way == 'avgpool3_2':
            self.proj = nn.Sequential(
                nn.AvgPool2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1),
                norm_layer(out_channels),
            )
        else:
            self.proj = nn.Sequential(
                nn.AvgPool2d(in_channels, out_channels, kernel_size=2, stride=2, padding=0),
                norm_layer(out_channels),
            )
        if self.cpe_per_satge:
            self.pos_embed = nn.Conv2d(out_channels, out_channels, 3, padding=1, groups=out_channels)
 
    def forward(self, x):
        #x: B, C, H ,W
        x = self.proj(x)
        if self.cpe_per_satge:
            x = x + self.pos_embed(x)
        return x
 
 
class Dilatestage(nn.Module):
    """ A basic Dilate Transformer layer for one stage.
    """
    def __init__(self, dim, depth, num_heads, kernel_size, dilation,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0.,
                 attn_drop=0., drop_path=0., act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm, cpe_per_satge=False, cpe_per_block=False,
                 downsample=True, merging_way=None):
 
        super().__init__()
        # build blocks
        self.blocks = nn.ModuleList([
            DilateBlock(dim=dim, num_heads=num_heads,
                        kernel_size=kernel_size, dilation=dilation,
                        mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                        qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
                        drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                        norm_layer=norm_layer, act_layer=act_layer, cpe_per_block=cpe_per_block)
            for i in range(depth)])
 
        # patch merging layer
        self.downsample = PatchMerging(dim, int(dim * 2), merging_way, cpe_per_satge) if downsample else nn.Identity()
 
    def forward(self, x):
        for blk in self.blocks:
            x = blk(x)
        x = self.downsample(x)
        return x
 
 
class Globalstage(nn.Module):
    """ A basic Transformer layer for one stage."""
    def __init__(self, dim, depth, num_heads, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 cpe_per_satge=False, cpe_per_block=False,
                 downsample=True, merging_way=None):
 
        super().__init__()
        # build blocks
        self.blocks = nn.ModuleList([
            GlobalBlock(dim=dim, num_heads=num_heads,
                        mlp_ratio=mlp_ratio,qkv_bias=qkv_bias,
                        qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
                        drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                        norm_layer=norm_layer, act_layer=act_layer, cpe_per_block=cpe_per_block)
            for i in range(depth)])
 
        # patch merging layer
        self.downsample = PatchMerging(dim, int(dim*2), merging_way, cpe_per_satge) if downsample else nn.Identity()
 
    def forward(self, x):
        for blk in self.blocks:
            x = blk(x)
        x = self.downsample(x)
        return x
 
 
class Dilateformer(nn.Module):
    def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96,
                 depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], kernel_size=3, dilation=[1, 2, 3],
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.1,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 merging_way='conv3_2',
                 patch_way='overlaping',
                 dilate_attention=[True, True, False, False],
                 downsamples=[True, True, True, False],
                 cpe_per_satge=False, cpe_per_block=True):
        super().__init__()
        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
 
        #patch embedding
        self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
                                      in_chans=in_chans, embed_dim=embed_dim, patch_way=patch_way)
        dpr = [x.item() for x in torch.linspace(0, drop_path, sum(depths))]
        self.stages = nn.ModuleList()
        for i_layer in range(self.num_layers):
            if dilate_attention[i_layer]:
                stage = Dilatestage(dim=int(embed_dim * 2 ** i_layer),
                                    depth=depths[i_layer],
                                    num_heads=num_heads[i_layer],
                                    kernel_size=kernel_size,
                                    dilation=dilation,
                                    mlp_ratio=self.mlp_ratio,
                                    qkv_bias=qkv_bias, qk_scale=qk_scale,
                                    drop=drop, attn_drop=attn_drop,
                                    drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                                    norm_layer=norm_layer,
                                    downsample=downsamples[i_layer],
                                    cpe_per_block=cpe_per_block,
                                    cpe_per_satge=cpe_per_satge,
                                    merging_way=merging_way
                                    )
            else:
                stage = Globalstage(dim=int(embed_dim * 2 ** i_layer),
                                    depth=depths[i_layer],
                                    num_heads=num_heads[i_layer],
                                    mlp_ratio=self.mlp_ratio,
                                    qkv_bias=qkv_bias, qk_scale=qk_scale,
                                    drop=drop, attn_drop=attn_drop,
                                    drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                                    norm_layer=norm_layer,
                                    downsample=downsamples[i_layer],
                                    cpe_per_block=cpe_per_block,
                                    cpe_per_satge=cpe_per_satge,
                                    merging_way=merging_way
                                    )
            self.stages.append(stage)
        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
 
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}
 
    def forward_features(self, x):
        x = self.patch_embed(x)
        for stage in self.stages:
            x = stage(x)
 
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x
 
    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x
 
 
@register_model
def dilateformer_tiny(pretrained=True, **kwargs):
    model = Dilateformer(depths=[2, 2, 6, 2], embed_dim=72, num_heads=[ 3, 6, 12, 24 ], **kwargs)
    model.default_cfg = _cfg()
    return model
 
 
@register_model
def dilateformer_small(pretrained=True, **kwargs):
    model = Dilateformer(depths=[3, 5, 8, 3], embed_dim=72, num_heads=[ 3, 6, 12, 24 ],  **kwargs)
    model.default_cfg = _cfg()
    return model
 
 
@register_model
def dilateformer_base(pretrained=True, **kwargs):
    model = Dilateformer(depths=[4, 8, 10, 3], embed_dim=96, num_heads=[ 3, 6, 12, 24 ],  **kwargs)
    model.default_cfg = _cfg()
    return model
 
 
 
 
 
if __name__ == "__main__":
    x = torch.rand([1, 3, 224,224])
    m = dilateformer_tiny(pretrained=False)
    y = m(x)
    print(y.shape)

2.2 步骤二

在tasks.py中注册我们的MSDA模块。 如下图所示

2.3 步骤三

在parse_model中添加如下红框标注代码

到此注册成功,复制后面的yaml文件直接运行即可

关于msda添加的位置有两种方案,大家可以自行选择

yaml文件1

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  - [-1, 1, MultiDilatelocalAttention, []]  # 22
 
  - [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

yaml文件2

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, MultiDilatelocalAttention, []]  # 16
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 1, MultiDilatelocalAttention, []]  # 20
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 23 (P5/32-large)
  - [-1, 1, MultiDilatelocalAttention, []]  # 24
 
  - [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 关于MSDA添加的位置可以自行调试,针对不同数据集位置不同,效果不同

不知不觉已经看完了哦,动动小手留个点赞吧--_--

相关推荐
lilu88888881 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜1 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记1 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记1 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜1 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、2 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营3 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao3 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain3 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉
人类群星闪耀时4 小时前
用深度学习优化供应链管理:让算法成为商业决策的引擎
人工智能·深度学习·算法