对于Jacobian矩阵的理解GVINS

理解GVINS中的jacobians设置

在GNSS处理的阶段 由于涉及了误差函数residual,同时,我们也了解到jacobians矩阵是误差函数对于待优化的变量求导后得到的矩阵
可以理解为:误差函数对于位姿、待估计优化变量得到的雅可比矩阵 ,决定着下一步骤最优迭代估计的方向。

所以在GVINS的个人jacobians矩阵推倒的理解如下:

上面的图片为根据GNSS的pseudorange待估计的(待优化的变量)因为是伪距和doppler共同估计 所以 此时的待估计优化参数有位置、速度、钟差、钟漂等

下图是对于估计的伪距的计算,最终估计的伪距通过psr_estimated 表示。
残差是通过下面这行给出的:
通过对residual函数的每个待优化的变量分别求导,得出jacobians的矩阵。

矩阵的设置如下:J_Pi 矩阵设置成为<2,7>表示residual为2维度,而7表示待估计的优化变量是7维度。

通过:J_Pi.topLeftCorner<1, 3>() = -rcv2sat_unit.transpose() * R_ecef_local * pr_weight * ratio;表示:将Jacobians矩阵的左上角<1,3>1行3列的元素填满为rcv2sat_unit.transpose() * R_ecef_local * pr_weight * ratio。
rcv2sat_unit.transpose() * R_ecef_local * pr_weight * ratio实则为residual(Pseudorange)对于Pi求导的结果

同理J_Pi.bottomLeftCorner<1, 3>() = (sv_vel-V_ecef).transpose() * unit2rcv_pos * R_ecef_local * dp_weight * ratio;实则表示对于residual[2]也就是residual(DopplerVelocity对Pi求导的结果)

其中residual[2]的设置为: residuals[1] = (dopp_estimated + obs->dopp[freq_idx]*wavelength) * dp_weight;

而J_Pi.bottomLeftCorner<1, 3>()填入的数值 正好是对residual[2]求导的结果:(sv_vel-V_ecef).transpose() * unit2rcv_pos *

R_ecef_local * dp_weight * ratio;

接下来的

cpp 复制代码
if (jacobians[1])
        {
            Eigen::Map<Eigen::Matrix<double, 2, 9, Eigen::RowMajor>> J_Vi(jacobians[1]);
            J_Vi.setZero();
            J_Vi.bottomLeftCorner<1, 3>() = rcv2sat_unit.transpose() * (-1.0) * 
                R_ecef_local * dp_weight * ratio;
        }

同样能理解:为residual(2维度向量)对待优化变量的求导,其中这个待优化变量选择的是9维度表示------待优化变量中包括velocity(3),bias_gyro(3)bias_acce(3),而对于residual求导也就是velocity会存在数值,我进行求导后,推导出来的结果和J_Vi.bottomLeftCorner<1, 3>()赋值的结果相同为:rcv2sat_unit.transpose() * (-1.0) *

R_ecef_local * dp_weight * ratio;这是对residul(DopplerVelocity求导的结果)

接下来的Jacobian赋值同理,作者真的很强,能够独立推导residual的待优化变量求导 我向大佬学习。

相关推荐
Hi2024021716 小时前
使用 Apollo TransformWrapper 生成相机到各坐标系的变换矩阵
数码相机·线性代数·矩阵·自动驾驶·apollo
塔中妖16 小时前
【华为OD】最大子矩阵和
算法·华为od·矩阵
君名余曰正则1 天前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
点云SLAM1 天前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值
代码的余温1 天前
Oracle RAC认证矩阵:规避风险的关键指南
数据库·oracle·矩阵
阿巴Jun1 天前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
沧海一粟青草喂马2 天前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵
小麦矩阵系统永久免费2 天前
小麦矩阵系统:让短视频分发实现抖音快手小红书全覆盖
大数据·人工智能·矩阵
scx_link2 天前
数学知识--行向量与矩阵相乘,和矩阵与行向量相乘的区别
线性代数·矩阵
EQUINOX12 天前
矩阵的对称,反对称分解
线性代数·矩阵