Datawhale X 李宏毅苹果书 AI夏令营 入门 Task1-机器学习

目录

机器学习基础

机器学习:机器具备有学习的能力/让机器具备找一个函数的能力。比如语音识别、图像识别、

机器学习有不同的类别。

1)回归:假设要找的函数的输出是一个数值/标量,这种机器学习的任务称为回归。

2)分类:分类任务要让机器做选择题。人类先准备好一些选项,这些选项称为类别。

3)结构化学习:机器不只是要做选择题或输出一个数字,而是产生一个有结构的物体,比如让机器画一张图,写一篇文章。这种叫机器产生有结构的东西的问题称为结构化学习。

案例分析-视频的点击次数预测

机器学习流程

1)构建模型

写出一个带有未知参数的函数(模型),用于预测未来观看次数。

例如, y = b + w x 1 y = b + wx_1 y=b+wx1,其中 y 是预测的观看次数, x 1 x_1 x1 是前一天的观看次数,b 和 w 是未知参数。

其中,带有未知的参数的函数称为模型。特征 x 1 x_1 x1是这个函数里面已知的,而 w 跟 b 是未知的参数。w 称为权重,b 称为偏置。

2)定义损失函数

损失函数用于评估模型预测值与实际值之间的差异。

例如,如果 b = 500 和 w = 1,则预测函数为 y = 500 + x 1 y = 500 + x_1 y=500+x1。

计算每一条记录的预测值与实际值之间的差距,并求平均值得到损失。

3)最优化

使用梯度下降算法来调整模型参数,以最小化损失函数。

初始参数随机选取,然后根据损失函数的梯度来更新参数。

更新规则为: w 1 ← w 0 − η ∂ L / ∂ w ∣ w = w 0 w1 ← w0 - η ∂L/∂w | w=w_0 w1←w0−η∂L/∂w∣w=w0,其中 η 是学习率。

梯度下降过程中可能遇到局部最小值,但这通常不是一个严重的问题。

4)结果

在训练数据上找到了最佳参数 w* = 0.97, b* = 100。

使用这些参数得到的平均误差约为 480。

在未见过的数据上(2021年的数据),模型的误差为 0.58。

相关公式

1.模型公式:

2.损失函数

3.参数更新

相关推荐
小天努力学java4 分钟前
AI赋能传统系统:Spring AI Alibaba如何用大模型重构机票预订系统?
人工智能·spring
北_鱼6 分钟前
支持向量机(SVM):算法讲解与原理推导
算法·机器学习·支持向量机
Fuweizn21 分钟前
在工业生产中,物料搬运环节至关重要,搬运机器人开启新篇章
人工智能·智能机器人·复合机器人
AL.千灯学长2 小时前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
LCG元2 小时前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong2 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨3 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡3 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河3 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14553 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt