Datawhale X 李宏毅苹果书 AI夏令营 入门 Task1-机器学习

目录

机器学习基础

机器学习:机器具备有学习的能力/让机器具备找一个函数的能力。比如语音识别、图像识别、

机器学习有不同的类别。

1)回归:假设要找的函数的输出是一个数值/标量,这种机器学习的任务称为回归。

2)分类:分类任务要让机器做选择题。人类先准备好一些选项,这些选项称为类别。

3)结构化学习:机器不只是要做选择题或输出一个数字,而是产生一个有结构的物体,比如让机器画一张图,写一篇文章。这种叫机器产生有结构的东西的问题称为结构化学习。

案例分析-视频的点击次数预测

机器学习流程

1)构建模型

写出一个带有未知参数的函数(模型),用于预测未来观看次数。

例如, y = b + w x 1 y = b + wx_1 y=b+wx1,其中 y 是预测的观看次数, x 1 x_1 x1 是前一天的观看次数,b 和 w 是未知参数。

其中,带有未知的参数的函数称为模型。特征 x 1 x_1 x1是这个函数里面已知的,而 w 跟 b 是未知的参数。w 称为权重,b 称为偏置。

2)定义损失函数

损失函数用于评估模型预测值与实际值之间的差异。

例如,如果 b = 500 和 w = 1,则预测函数为 y = 500 + x 1 y = 500 + x_1 y=500+x1。

计算每一条记录的预测值与实际值之间的差距,并求平均值得到损失。

3)最优化

使用梯度下降算法来调整模型参数,以最小化损失函数。

初始参数随机选取,然后根据损失函数的梯度来更新参数。

更新规则为: w 1 ← w 0 − η ∂ L / ∂ w ∣ w = w 0 w1 ← w0 - η ∂L/∂w | w=w_0 w1←w0−η∂L/∂w∣w=w0,其中 η 是学习率。

梯度下降过程中可能遇到局部最小值,但这通常不是一个严重的问题。

4)结果

在训练数据上找到了最佳参数 w* = 0.97, b* = 100。

使用这些参数得到的平均误差约为 480。

在未见过的数据上(2021年的数据),模型的误差为 0.58。

相关公式

1.模型公式:

2.损失函数

3.参数更新

相关推荐
ThinkPet8 分钟前
【AI】大模型知识入门扫盲以及SpringAi快速入门
java·人工智能·ai·大模型·rag·springai·mcp
汽车仪器仪表相关领域9 分钟前
双组分精准快检,汽修年检利器:MEXA-324M汽车尾气测量仪项目实战全解
大数据·人工智能·功能测试·测试工具·算法·机器学习·压力测试
renhongxia19 分钟前
从文本到仿真:多智能体大型语言模型(LLM)自动化化学工艺设计工作流程
人工智能·语言模型·自动化
AI工具指南21 分钟前
实测教程:三种主流AI生成PPT工作流详解
人工智能·ppt
DO_Community21 分钟前
技术解码:Character.ai 如何实现大模型实时推理性能 2 倍提升
人工智能·算法·llm·aigc·moe·aiter
Kakaxiii22 分钟前
【2024ACL】Mind Map :知识图谱激发大型语言模型中的思维图谱
人工智能·语言模型·知识图谱
leo__52023 分钟前
基于A星算法的MATLAB路径规划实现
人工智能·算法·matlab
AAD5558889928 分钟前
基于YOLO11的自然景观多类别目标检测系统 山脉海洋湖泊森林建筑物桥梁道路农田沙漠海滩等多种景观元素检测识别
人工智能·目标检测·计算机视觉
数据分享者28 分钟前
新闻文本智能识别数据集:40587条高质量标注数据推动自然语言处理技术发展-新闻信息提取、舆情分析、媒体内容理解-机器学习模型训练-智能分类系统
人工智能·自然语言处理·数据挖掘·easyui·新闻文本
___波子 Pro Max.31 分钟前
LLM大语言模型定义与核心特征解析
人工智能·语言模型·自然语言处理