Datawhale X 李宏毅苹果书 AI夏令营 入门 Task1-机器学习

目录

机器学习基础

机器学习:机器具备有学习的能力/让机器具备找一个函数的能力。比如语音识别、图像识别、

机器学习有不同的类别。

1)回归:假设要找的函数的输出是一个数值/标量,这种机器学习的任务称为回归。

2)分类:分类任务要让机器做选择题。人类先准备好一些选项,这些选项称为类别。

3)结构化学习:机器不只是要做选择题或输出一个数字,而是产生一个有结构的物体,比如让机器画一张图,写一篇文章。这种叫机器产生有结构的东西的问题称为结构化学习。

案例分析-视频的点击次数预测

机器学习流程

1)构建模型

写出一个带有未知参数的函数(模型),用于预测未来观看次数。

例如, y = b + w x 1 y = b + wx_1 y=b+wx1,其中 y 是预测的观看次数, x 1 x_1 x1 是前一天的观看次数,b 和 w 是未知参数。

其中,带有未知的参数的函数称为模型。特征 x 1 x_1 x1是这个函数里面已知的,而 w 跟 b 是未知的参数。w 称为权重,b 称为偏置。

2)定义损失函数

损失函数用于评估模型预测值与实际值之间的差异。

例如,如果 b = 500 和 w = 1,则预测函数为 y = 500 + x 1 y = 500 + x_1 y=500+x1。

计算每一条记录的预测值与实际值之间的差距,并求平均值得到损失。

3)最优化

使用梯度下降算法来调整模型参数,以最小化损失函数。

初始参数随机选取,然后根据损失函数的梯度来更新参数。

更新规则为: w 1 ← w 0 − η ∂ L / ∂ w ∣ w = w 0 w1 ← w0 - η ∂L/∂w | w=w_0 w1←w0−η∂L/∂w∣w=w0,其中 η 是学习率。

梯度下降过程中可能遇到局部最小值,但这通常不是一个严重的问题。

4)结果

在训练数据上找到了最佳参数 w* = 0.97, b* = 100。

使用这些参数得到的平均误差约为 480。

在未见过的数据上(2021年的数据),模型的误差为 0.58。

相关公式

1.模型公式:

2.损失函数

3.参数更新

相关推荐
vocal16 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua17 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter24 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD25 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus37 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能42 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理