gaussian grouping训练自定义数据集

gaussian grouping是一个语义分割3DGS的方法。

它在每个3DGS点云中加入一个叫Identity Encoding的特征向量,

在渲染时把特征向量渲染到2D图像,每个像素位置为一个特征向量,使用额外的线性分类层对每个2D位置的特征向量分类。得到mask。

这个mask和gt mask计算2D损失,同时3D正则化损失利用3D空间一致性,强制执行Identity Encoding在特征距离上接近其最近的3D高斯点。

训练Identity Encoding和线性分类层。

如果训练时有比较完美的mask, 渲染的效果也是很好的。

下面以mip360/kitchen为例训练gaussian grouping. 其他数据集类似。

假设初步只有一些拍摄的图像。放在input文件夹。

用3DGS的convert.py文件处理mip360/kitchen之后,

可得到images和相关下采样图像文件夹,sparse文件夹。

kitchen数据集自带标注好的mask, 如果没有,需要自己标注mask(可以用prepare_pseudo_label.sh),

mask放在kitchen/object_mask文件夹下,格式为png.

train.json设置:

假设mask里面只有2类物体,即前景和背景,前景的像素值取的是255, 背景是0,

那么,在gaussian-grouping/config/gaussian_dataset/train.json中,

"num_classes"要写256.

你会纳闷,为什么只有2类却要写256类?

因为你的前景像素值取的是255,从数字上看,它是第255个类别,想输出类别255,分类器中就要有>=255个类别。如果前景像素值取1,那么"num_classes"可以写2。

类别写小了会报错cuda非法内存访问。

当cuda内存有限时,可以设置较小的"reg3d_max_points"和"reg3d_sample_size"。

train.py

数据集图片过大时可能需要resize,用到images_2, images_4文件夹,

而假设你标注的mask只有一个尺寸。

那么训练的时候就需要把mask调整到和渲染mask一个尺寸。

python 复制代码
logits = classifier(objects)
# Object Loss
if len(viewpoint_cam.objects.shape) > 2:
    gt_obj = viewpoint_cam.objects[:,:,0]  #mask是单通道时不需要这步
    gt_obj_reshaped = gt_obj.unsqueeze(0).unsqueeze(0)
    gt_obj_resized = F.interpolate(gt_obj_reshaped,
                                   size=(logits.shape[1], logits.shape[2]),
                                   mode='nearest')
    gt_obj_resized = gt_obj_resized.squeeze(0).squeeze(0)
    gt_obj = gt_obj_resized.cuda().long()
else:
    gt_obj = viewpoint_cam.objects.cuda().long()

训练很简单,

bash 复制代码
train.py -s data/mip360/kitchen -r 2  -m output/kitchen --config_file config/gaussian_dataset/train.json

渲染时,num_classes要和前面一致:

bash 复制代码
render.py -m output/kitchen --num_classes 256

会在output/kitchen中得到mask等结果。

相关推荐
UQI-LIUWJ29 分钟前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型
大魔王(已黑化)1 小时前
OpenCV —— 绘制图形
人工智能·opencv·计算机视觉
bright_colo1 小时前
Python-初学openCV——图像预处理(四)——滤波器
python·opencv·计算机视觉
Mikowoo0071 小时前
09_opencv_遍历操作图像像素
opencv·计算机视觉
开开心心_Every1 小时前
多线程语音识别工具
javascript·人工智能·ocr·excel·语音识别·symfony
机器之心2 小时前
扣子开源全家桶,Apache 2.0加持,AI Agent又一次卷到起飞
人工智能
草堂春睡足2 小时前
【Datawhale AI夏令营】科大讯飞AI大赛(大模型技术)/夏令营:让AI理解列车排期表
人工智能·笔记
余俊晖2 小时前
GRPO强化学习缓解多模态大模型OCR任务的幻觉思路及数据生成思路
人工智能
sssammmm2 小时前
AI入门学习-模型评估示例讲解
人工智能·学习
小Tomkk2 小时前
AutoLabelImg:高效的数据自动化标注工具和下载
运维·人工智能·自动化