深度学习100问33:如何避免梯度消失

嘿,想避免梯度消失这个麻烦事儿,有几个妙招哦。

首先呢,选个好的"调味料",也就是激活函数。不同的激活函数效果可不一样呢。像 ReLU 函数就很不错,它就像个厉害的小助手。当输入是正数的时候,它的梯度始终是 1,不会像有些传统激活函数那样,

在反向传播的时候梯度越来越小。

接着,得用合适的方法来"开场",也就是初始化方法。就像玩游戏一开始要设置好状态一样。像 Xavier 初始化和 He 初始化这些方法,可以根据网络的结构自动调整权重的初始值,让信号在网络里能更好地传播,就像给信号铺了一条顺畅的路。

还有哦,可以在网络里修一些"捷径",这就是残差连接。想象一下在一条长长的路上修一些小道,这样信号就可以直接从一层传到更深的层,不用经过好多层,就不会出现梯度慢慢消失的问题啦。

另外呢,用点"约束魔法",也就是正则化技术。这就像给神经网络加上一些规矩,防止它乱来。比如 L1 和 L2 正则化,可以限制权重的大小,不让权重变得太大导致梯度消失。而且正则化还能让模型更听话,不会乱猜,提高泛化能力。

最后,要调好"油门",也就是学习率。学习率就像控制神经网络学习速度的开关。要是太大了,模型可能一下子就跑过头,错过最优解;要是太小了,模型就像蜗牛爬,慢得让人着急。合理设置学习率可以让模型训练得更稳定,减少梯度消失的风险。可以用一些聪明的自适应学习率优化算法,像 Adam、Adagrad 等,它们能根据模型的训练情况自动调整学习率,可贴心啦。

相关推荐
灵途科技2 小时前
灵途科技亮相NEPCON ASIA 2025 以光电感知点亮具身智能未来
人工智能·科技·机器人
文火冰糖的硅基工坊3 小时前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm
IT90903 小时前
c#+ visionpro汽车行业,机器视觉通用检测程序源码 产品尺寸检测,机械手引导定位等
人工智能·计算机视觉·视觉检测
Small___ming4 小时前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
Ro Jace4 小时前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
渔舟渡简4 小时前
机器学习-回归分析概述
人工智能·机器学习
王哈哈^_^4 小时前
【数据集】【YOLO】目标检测游泳数据集 4481 张,溺水数据集,YOLO河道、海滩游泳识别算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·分类·视觉检测
桂花饼4 小时前
Sora 2:从视频生成到世界模拟,OpenAI的“终极游戏”
人工智能·aigc·openai·sora 2
wwlsm_zql5 小时前
荣耀YOYO智能体:自动执行与任务规划,开启智能生活新篇章
人工智能·生活
科学计算技术爱好者5 小时前
未来已来:AI 如何在 3 年内重塑工作、教育与生活
人工智能·ai