深度学习100问33:如何避免梯度消失

嘿,想避免梯度消失这个麻烦事儿,有几个妙招哦。

首先呢,选个好的"调味料",也就是激活函数。不同的激活函数效果可不一样呢。像 ReLU 函数就很不错,它就像个厉害的小助手。当输入是正数的时候,它的梯度始终是 1,不会像有些传统激活函数那样,

在反向传播的时候梯度越来越小。

接着,得用合适的方法来"开场",也就是初始化方法。就像玩游戏一开始要设置好状态一样。像 Xavier 初始化和 He 初始化这些方法,可以根据网络的结构自动调整权重的初始值,让信号在网络里能更好地传播,就像给信号铺了一条顺畅的路。

还有哦,可以在网络里修一些"捷径",这就是残差连接。想象一下在一条长长的路上修一些小道,这样信号就可以直接从一层传到更深的层,不用经过好多层,就不会出现梯度慢慢消失的问题啦。

另外呢,用点"约束魔法",也就是正则化技术。这就像给神经网络加上一些规矩,防止它乱来。比如 L1 和 L2 正则化,可以限制权重的大小,不让权重变得太大导致梯度消失。而且正则化还能让模型更听话,不会乱猜,提高泛化能力。

最后,要调好"油门",也就是学习率。学习率就像控制神经网络学习速度的开关。要是太大了,模型可能一下子就跑过头,错过最优解;要是太小了,模型就像蜗牛爬,慢得让人着急。合理设置学习率可以让模型训练得更稳定,减少梯度消失的风险。可以用一些聪明的自适应学习率优化算法,像 Adam、Adagrad 等,它们能根据模型的训练情况自动调整学习率,可贴心啦。

相关推荐
guanshiyishi3 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash3 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki3 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen4 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库5 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe6 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
ZStack开发者社区6 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算
Spcarrydoinb7 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉
非ban必选8 小时前
spring-ai-alibaba第四章阿里dashscope集成百度翻译tool
java·人工智能·spring