【AI学习】聊两句深度学习的目标函数

在阅读《动手学深度学习》一书中,看到这样一段话:

"导数的计算,这是⼏乎所有深度学习优化算法的关键步骤。

在深度学习中,我们通常选择对于模型参数可微的损失函数。简⽽⾔之,对于每个参数,如果我们把这个参数增加或减少⼀个⽆穷⼩的量,我们可以知道损失会以多快的速度增加或减少。"

前面的文章也提到:深度学习回答了什么样的神经网络可以训练出智能,包括多层神经网络和卷积神经网络,也回答了训练(学习)方法问题,包括受限玻尔兹曼机模型、反向传播算法、自编码模型等。

反向传播算法,也就是反向导数传播,通过计算损失函数的损失,利用损失函数对于模型参数的可微性,将损失调整转换为模型参数的导数传播。这差不多是深度学习关键方法。由此也让深度学习模型成为函数的万能逼近器。

那如何目标函数不可微,怎么办?一种就是重参数化,类似VAE论文中采用方法。另一种就是采用强化学习,类似RLHF的方法。

相关推荐
山河亦问安5 分钟前
Spring原理编码学习
java·学习·spring
钅日 勿 XiName5 分钟前
一小时速通pytorch之训练分类器(四)(完结)
人工智能·pytorch·python
青瓷程序设计10 分钟前
水果识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
Dev7z24 分钟前
多模态表情识别:让机器真正“看见”情绪
人工智能
思成不止于此25 分钟前
【C++ 数据结构】二叉搜索树:原理、实现与核心操作全解析
开发语言·数据结构·c++·笔记·学习·搜索二叉树·c++40周年
2501_9418059325 分钟前
数据科学与机器学习:如何利用算法驱动企业智能决策
人工智能
AI模块工坊29 分钟前
CVPR 即插即用 | 当RetNet遇见ViT:一场来自曼哈顿的注意力革命,中科院刷新SOTA性能榜!
人工智能·深度学习·计算机视觉·transformer
m0_650108241 小时前
Gemini 2.5:重塑多模态 AI 边界的全面解读
论文阅读·人工智能·多模态大模型·gemini 2.5·跨模态融合
wuk9981 小时前
基于Matlab的彩色图像特征提取实现
人工智能·计算机视觉·matlab
GEO_NEWS1 小时前
2025下半年GEO服务商技术革命:万数科技以AI全链路优化定义行业标杆
人工智能