【AI学习】聊两句深度学习的目标函数

在阅读《动手学深度学习》一书中,看到这样一段话:

"导数的计算,这是⼏乎所有深度学习优化算法的关键步骤。

在深度学习中,我们通常选择对于模型参数可微的损失函数。简⽽⾔之,对于每个参数,如果我们把这个参数增加或减少⼀个⽆穷⼩的量,我们可以知道损失会以多快的速度增加或减少。"

前面的文章也提到:深度学习回答了什么样的神经网络可以训练出智能,包括多层神经网络和卷积神经网络,也回答了训练(学习)方法问题,包括受限玻尔兹曼机模型、反向传播算法、自编码模型等。

反向传播算法,也就是反向导数传播,通过计算损失函数的损失,利用损失函数对于模型参数的可微性,将损失调整转换为模型参数的导数传播。这差不多是深度学习关键方法。由此也让深度学习模型成为函数的万能逼近器。

那如何目标函数不可微,怎么办?一种就是重参数化,类似VAE论文中采用方法。另一种就是采用强化学习,类似RLHF的方法。

相关推荐
熊猫钓鱼>_>几秒前
GLM4.6多工具协同开发实践:AI构建智能任务管理系统的完整指南
人工智能·python·状态模式·ai编程·glm·分类系统·开发架构
川西胖墩墩2 分钟前
中文PC端跨职能流程图模板免费下载
大数据·论文阅读·人工智能·架构·流程图
潲爺6 分钟前
《Java 8-21 高频特性实战(上):5 个场景解决 50% 开发问题(附可运行代码)》
java·开发语言·笔记·学习
Keep_Trying_Go13 分钟前
MaskGIT掩码生成图算法详解(MaskGIT: Masked Generative Image Transformer)
人工智能·深度学习·transformer
致Great15 分钟前
大模型对齐核心技术:从第一性原理完整推导 PPO 算法!
人工智能·算法·大模型·agent·智能体
Darken0319 分钟前
基于STM32---编码器测速(利用GPIO模拟脉冲信号)
人工智能·stm32·串口助手·gpio模拟编码器
Mintopia19 分钟前
🪄 生成式应用的 **前端 orchestration 层(编排层)指南**
人工智能·llm·aigc
雍凉明月夜24 分钟前
深度学习之常用归一化(Normalization)
人工智能·深度学习·计算机视觉
沃达德软件24 分钟前
视频标注技术全解析
人工智能·目标检测·计算机视觉·视觉检测·音视频·实时音视频·视频编解码
Buxxxxxx27 分钟前
DAY 44 简单CNN
人工智能·神经网络·cnn