【AI学习】聊两句深度学习的目标函数

在阅读《动手学深度学习》一书中,看到这样一段话:

"导数的计算,这是⼏乎所有深度学习优化算法的关键步骤。

在深度学习中,我们通常选择对于模型参数可微的损失函数。简⽽⾔之,对于每个参数,如果我们把这个参数增加或减少⼀个⽆穷⼩的量,我们可以知道损失会以多快的速度增加或减少。"

前面的文章也提到:深度学习回答了什么样的神经网络可以训练出智能,包括多层神经网络和卷积神经网络,也回答了训练(学习)方法问题,包括受限玻尔兹曼机模型、反向传播算法、自编码模型等。

反向传播算法,也就是反向导数传播,通过计算损失函数的损失,利用损失函数对于模型参数的可微性,将损失调整转换为模型参数的导数传播。这差不多是深度学习关键方法。由此也让深度学习模型成为函数的万能逼近器。

那如何目标函数不可微,怎么办?一种就是重参数化,类似VAE论文中采用方法。另一种就是采用强化学习,类似RLHF的方法。

相关推荐
vocal18 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua19 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter26 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD27 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
我的golang之路果然有问题37 分钟前
快速了解redis,个人笔记
数据库·经验分享·redis·笔记·学习·缓存·内存
IT_Octopus39 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能44 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae