【AI学习】聊两句深度学习的目标函数

在阅读《动手学深度学习》一书中,看到这样一段话:

"导数的计算,这是⼏乎所有深度学习优化算法的关键步骤。

在深度学习中,我们通常选择对于模型参数可微的损失函数。简⽽⾔之,对于每个参数,如果我们把这个参数增加或减少⼀个⽆穷⼩的量,我们可以知道损失会以多快的速度增加或减少。"

前面的文章也提到:深度学习回答了什么样的神经网络可以训练出智能,包括多层神经网络和卷积神经网络,也回答了训练(学习)方法问题,包括受限玻尔兹曼机模型、反向传播算法、自编码模型等。

反向传播算法,也就是反向导数传播,通过计算损失函数的损失,利用损失函数对于模型参数的可微性,将损失调整转换为模型参数的导数传播。这差不多是深度学习关键方法。由此也让深度学习模型成为函数的万能逼近器。

那如何目标函数不可微,怎么办?一种就是重参数化,类似VAE论文中采用方法。另一种就是采用强化学习,类似RLHF的方法。

相关推荐
珠海西格电力1 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃1 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
想进部的张同学1 小时前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
启途AI1 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_11 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客2 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨2 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦2 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志2 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经2 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm