【AI学习】聊两句深度学习的目标函数

在阅读《动手学深度学习》一书中,看到这样一段话:

"导数的计算,这是⼏乎所有深度学习优化算法的关键步骤。

在深度学习中,我们通常选择对于模型参数可微的损失函数。简⽽⾔之,对于每个参数,如果我们把这个参数增加或减少⼀个⽆穷⼩的量,我们可以知道损失会以多快的速度增加或减少。"

前面的文章也提到:深度学习回答了什么样的神经网络可以训练出智能,包括多层神经网络和卷积神经网络,也回答了训练(学习)方法问题,包括受限玻尔兹曼机模型、反向传播算法、自编码模型等。

反向传播算法,也就是反向导数传播,通过计算损失函数的损失,利用损失函数对于模型参数的可微性,将损失调整转换为模型参数的导数传播。这差不多是深度学习关键方法。由此也让深度学习模型成为函数的万能逼近器。

那如何目标函数不可微,怎么办?一种就是重参数化,类似VAE论文中采用方法。另一种就是采用强化学习,类似RLHF的方法。

相关推荐
eBest数字化转型方案26 分钟前
2025年快消品行业渠道数字化营销系统全景透视与选型策略
人工智能
kkcodeer41 分钟前
大模型Prompt原理、编写原则与技巧以及衡量方法
人工智能·prompt·ai大模型
DevSecOps选型指南1 小时前
SBOM风险预警 | NPM前端框架 javaxscript 遭受投毒窃取浏览器cookie
前端·人工智能·前端框架·npm·软件供应链安全厂商·软件供应链安全工具
rocksun1 小时前
MCP利用流式HTTP实现实时AI工具交互
人工智能·mcp
xiaok1 小时前
docker network create langbot-network这条命令在dify输入还是在langbot中输入
人工智能
It_张1 小时前
LLM(大语言模型)的工作原理 图文讲解
人工智能·语言模型·自然语言处理
Darach1 小时前
坐姿检测Python实现
人工智能·python
xiaok1 小时前
LangBot 和消息平台均运行在 Docker 容器中
人工智能
queeny2 小时前
Datawhale AI夏令营 科大讯飞AI大赛(大模型技术) Task3 心得
人工智能