概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二)

概率不用介绍,它的定义可以用一个公式写出:

事件发生的概率 = 事件可能发生的个数 结果的总数 事件发生的概率=\cfrac{事件可能发生的个数}{结果的总数} 事件发生的概率=结果的总数事件可能发生的个数

比如一副标准的 52 张的扑克牌,每张牌都是唯一的,所以,抽一张牌时,每张牌的概率都是 1/52。但是有人就会说了,A 点明明有四张,怎么会是 1/52 的概率。

这就需要精准的指出我们计算概率时,到底什么是样本,什么是事件。

样本、事件

在一次统计中,一个可能的结果是样本点,样本点应该是唯一的。而事件可能是耦合的,比如扑克牌中,黑桃 A 就是一个样本点,大小王是两个样本点,但是 A 点就是事件,因为 A 有四张。

事件是包含样本点或排除样本点的,比如抽中 A 的概率,这个概率就包含四个样本点,分别是四张 A。如果是不抽中小丑的概率,这个概率就是排除大小王两个样本点。

  • 样本点:一个可能的结果。
  • 事件:实验的一个成果。
  • 样本空间:所有样本的集合。(上面例子即整整一副扑克牌)

一个特殊的点是,骰子和硬币两面的概率严谨计算的话,他们的各个样本点的概率不一致,因为骰子和硬币是不规则的。不过后文的例子都会默认忽略,理想的认为骰子和硬币每个样本点的概率一致。

随机变量

随机变量是实验结果的抽象,一般用 X 表示。它用来描述实验结果的可能 数值

在扑克牌中,每张牌天然具有点数,我们可以借用牌面的点数进行一些列的概率计算,但是掷硬币判断正反面呢?正反面不具有数值性,但是我们把正面记作 1 ,反面记作 0 来进行后续的数学计算。在进行这样的抽象之后,数值 0 和 1 就组成掷硬币实验的随机变量。

也就是:

  • 随机事件抽象为数值
  • 数值组成随机变量

当然这个数值是你自定义的,正面可以是 500,反面可以是 -1000,这和逻辑无关,随机变量的值是任意的。

https://www.shuxuele.com/data/random-variables.html

期望 μ

期望 μ (希腊语 mu 读作 /mjuː/),为了区别于"期望"本身的意义,在数学上更准确的说法是数学期望。期望用来描述一组随机值的均值,某种程度上也可以叫做均值。但是在概率中,期望的均值是根据概率加权求平均,而不是直接用事件求平均。

期望可以反应概率的平均结果,比如掷骰子,掷足够多次之后,累计点数除以掷的次数,就是骰子点数的期望。

期望的计算方式是:

μ = Σ x p μ = \Sigma{xp} μ=Σxp

其中, Σ \Sigma Σ 读作 Sigma,用于求和; x x x 代表事件的值;p(Probability)代表概率。

显然一个骰子点数的期望就是:

μ = Σ x p = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6 μ = \Sigma{xp} = 1 \cdot \cfrac{1}{6} + 2 \cdot \cfrac{1}{6} + 3 \cdot \cfrac{1}{6} + 4 \cdot \cfrac{1}{6} + 5 \cdot \cfrac{1}{6} + 6 \cdot \cfrac{1}{6} μ=Σxp=1⋅61+2⋅61+3⋅61+4⋅61+5⋅61+6⋅61

方差 Var(X)

方差用来形容事件的离散程度,这个值越大,说明事件概率离散程度越高,也就是越不稳定。

方差的公式是:

V a r ( X ) = Σ x 2 p − μ 2 Var(X) = \Sigma{x^2p} - μ^2 Var(X)=Σx2p−μ2

如果一个事件必定发生,那么方差就是 0。

标准差 σ

标准差 σ (sigma)就是方差的的平方根。因为方差在计算时使用的平方,标准差的值相比方差可读性稍微高一点,比较靠近期望。

计算如:

σ = V a r ( X ) σ = \sqrt{Var(X)} σ=Var(X)

小练习

同时掷四个硬币,记硬币正面为 1,反面为 0,求硬币为正面的标准差。

解:

每个硬币两种可能性,正面和反面,四枚硬币掷出的事件有:

2 4 = 16 2^4=16 24=16

取每次支持正面朝上的个数做随机变量 X,有:

X ∈ { 0 , 1 , 2 , 3 , 4 } X \isin \{0,1,2,3,4\} X∈{0,1,2,3,4}

使用组合思想,每次掷出有 m 个正面的次数有 C 4 m C_4^m C4m,概率 P(X) 有:

P ( X ) = C 4 X 16 P(X) = \cfrac{C_4^X}{16} P(X)=16C4X

期望为:

μ = Σ x p = Σ x C 4 x 16 = 2 \mu = \Sigma{xp}=\Sigma{ x \cfrac{C_4^x}{16}} = 2 μ=Σxp=Σx16C4x=2

方差为:

V a r ( x ) = Σ x 2 c 4 x 16 − μ 2 = 5 − 4 = 1 Var(x) = \Sigma{ x^2\cfrac{c_4^x}{16} - \mu^2 } = 5 - 4 = 1 Var(x)=Σx216c4x−μ2=5−4=1

取方差算术平方根结果可得到标准差,答案是 1。

参考

相关推荐
lingxiao168887 分钟前
双目立体视觉
图像处理·算法·机器学习·计算机视觉
赵青临的辉16 分钟前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论
Dovis(誓平步青云)16 分钟前
基于面向对象设计的C++日期推算引擎:精准高效的时间运算实现与运算重载工程化实践
开发语言·c++·经验分享·笔记
寂空_21 分钟前
【算法笔记】ACM数论基础模板
c++·笔记·算法
cdut_suye1 小时前
【Linux系统】从 C 语言文件操作到系统调用的核心原理
java·linux·数据结构·c++·人工智能·机器学习·云计算
meisongqing1 小时前
【软件工程】机器学习多缺陷定位技术分析
人工智能·机器学习·软件工程·缺陷定位
补三补四2 小时前
随机森林(Random Forest)
人工智能·科技·算法·随机森林·机器学习
ALINX技术博客2 小时前
【ALINX 实战笔记】FPGA 大神 Adam Taylor 使用 ChipScope 调试 AMD Versal 设计
笔记·fpga开发
关山煮酒2 小时前
【数据挖掘笔记】兴趣度度量Interest of an association rule
笔记·数据挖掘
dundunmm2 小时前
【每天一个知识点】Dip 检验(Dip test)
人工智能·机器学习