Pyspark DataFrame常用操作函数和示例

针对类型:pyspark.sql.dataframe.DataFrame
目录

1.打印前几行

[1.1 show()函数](#1.1 show()函数)

[1.2 take()函数](#1.2 take()函数)

[2. 读取文件](#2. 读取文件)

[2.1 spark.read.csv](#2.1 spark.read.csv)

[3. 获取某行某列的值(具体值)](#3. 获取某行某列的值(具体值))

4.查看列名

5.修改列名

[5.1 修改单个列名](#5.1 修改单个列名)

[5.2 修改多个列名](#5.2 修改多个列名)

[5.2.1 链式调用 withColumnRenamed 方法](#5.2.1 链式调用 withColumnRenamed 方法)

[5.2.2 使用 selectExpr 方法](#5.2.2 使用 selectExpr 方法)

[6. pandas类型转化为pyspark pandas](#6. pandas类型转化为pyspark pandas)

[7.选择特定的列,创建一个新的 DataFrame](#7.选择特定的列,创建一个新的 DataFrame)

[8.列表套字典格式转化为pyspark DataFrame](#8.列表套字典格式转化为pyspark DataFrame)

[9. 根据某列或者某列进行去重](#9. 根据某列或者某列进行去重)

[10. pyspark 的两个dataframe合并](#10. pyspark 的两个dataframe合并)

[11.查看 pyspark dataframe中某列为空的数量](#11.查看 pyspark dataframe中某列为空的数量)

[12.删除 pyspark dataframe中 第一行数据](#12.删除 pyspark dataframe中 第一行数据)

[13.pyspark dataframe用空格拼接两列得到新的列](#13.pyspark dataframe用空格拼接两列得到新的列)

[14.将pyspark dataframe 保存到集群(分片)](#14.将pyspark dataframe 保存到集群(分片))

[16.将pyspark dataframe 保存为csv](#16.将pyspark dataframe 保存为csv)

实际场景1

实际场景2


1.打印前几行

1.1 show()函数

  • show() 函数会将指定数量的行(默认是 20 行)转换为字符串并打印到控制台。
  • 无返回值,直接打印数据到控制台。

用法:

python 复制代码
df.show()  # 默认显示前 20 行
df.show(10)  # 显示前 10 行

1.2 take()函数

  • 用于获取 DataFrame 的前 N 行数据,返回一个包含 Row 对象的列表。
  • 返回一个包含 Row 对象的列表。
  • 返回一个包含前 N 行数据的列表,每行数据以 Row 对象的形式存在。你可以通过索引访问这些行,并进一步处理它们。
python 复制代码
rows = df.take(5)  # 获取前 5 行数据
for row in rows:
    print(row)

2. 读取文件

2.1 spark.read.csv

python 复制代码
df = spark.read.csv(path, sep="\t", header=False, inferSchema=True).toDF('id','time','label','feature')
  • inferSchema=True: 让 Spark 自动推断 CSV 文件中各列的数据类型
  • toDF: 这是一个 DataFrame 方法,用于为 DataFrame 的列指定新的列名。

3. 获取某行某列的值(具体值)

直接获取 DataFrame 的特定行(例如第 562962 行)并不是一个高效的操作,因为 Spark 是

分布式计算框架,数据被分割并在多个节点上并行处理

python 复制代码
# 获取第一行
first_row = df.first()

# 获取 feature 列的值
first_row['feature_1']
python 复制代码
# 获取前两行
rows = df.take(2)

# 获取第二行
second_row = rows[1]

# 获取 feature 列的值
second_row['feature']

4.查看列名

python 复制代码
df.columns

5.修改列名

5.1 修改单个列名

python 复制代码
# 修改列名
df_renamed = df.withColumnRenamed("name", "new_name")

5.2 修改多个列名

5.2.1 链式调用 withColumnRenamed 方法

python 复制代码
# 修改多个列名
df_renamed = df.withColumnRenamed("id", "new_id").withColumnRenamed("name", "new_name")

5.2.2 使用 selectExpr 方法

注意:使用 selectExpr 方法时,最后只会得到你修改的列,即,在函数参数中的列名

如果想使用该方法时,还想要原来的列名,就直接, 在参数中加入,"原列名 as 原列名"

python 复制代码
# 使用 selectExpr 修改列名
df_renamed = df.selectExpr("id as new_id", "name as new_name")

6. pandas类型转化为pyspark pandas

复制代码
pandas.core.frame.DataFrame 类型转化为 pyspark.sql.dataframe.DataFrame
python 复制代码
# 将 Pandas DataFrame 转换为 PySpark DataFrame
pyspark_df = spark.createDataFrame(pandas_df)

7.选择特定的列,创建一个新的 DataFrame

python 复制代码
# 选择某几列并创建新的 DataFrame
new_df = df.select("name", "age")

8.列表套字典格式转化为pyspark DataFrame

python 复制代码
# 示例列表套字典
data = [
    {"name": "Alice", "age": 25, "id": 1},
    {"name": "Bob", "age": 30, "id": 2},
    {"name": "Cathy", "age": 35, "id": 3}
]

# 将列表套字典转换为 PySpark DataFrame
df = spark.createDataFrame(data)

# 显示 DataFrame
df.show()

9. 根据某列或者某列进行去重

python 复制代码
duyuv3_1_df = duyuv3_1_df.dropDuplicates(['md5', 'time', 'label'])

10. pyspark 的两个dataframe合并

python 复制代码
merged_v3_1_df = duyuv3_1_df.join(passid_md5_df, on=['md5'], how='left')

11.查看 pyspark dataframe中某列为空的数量

python 复制代码
null_passid_count = merged_v3_1_df.filter(merged_v3_1_df['passid'].isNull()).count()
print(f"passid is null:{null_passid_count}")

12.删除 pyspark dataframe中 第一行数据

python 复制代码
data_df = data_df.filter(col("_c0") != data_df.first()[0])
  • data_df.first(): 获取 DataFrame 的第一行数据。

  • col("_c0") : 获取 DataFrame 的第一列(默认情况下,Spark 会将 CSV 文件的列命名为 _c0, _c1, _c2, ...)。

  • data_df.filter(col("_c0") != data_df.first()[0]): 过滤掉第一行数据。这里假设第一行的第一列值与后续行的第一列值不同,因此通过比较第一列的值来过滤掉第一行。

13.pyspark dataframe用空格拼接两列得到新的列

python 复制代码
# 拼接特征列
        replace_df = replace_df.withColumn(
            'merged_feature',
            when(col('featurev3').isNotNull() & col('feature_v3_1').isNotNull(),
                 concat_ws(' ', col('featurev3'), col('feature_v3_1')))
            .when(col('featurev3').isNotNull(), col('featurev3'))
            .when(col('feature_v3_1').isNotNull(), col('feature_v3_1'))
            .otherwise(lit(''))
        )

14.将pyspark dataframe 保存到集群(分片)

python 复制代码
save_path =f'afs://szth.afs.****.com:9902/user/fsi/duyuv3_1_feature/result_duyuv3_1/'
rdd_combined_duyuv3_1 = feature_cgc.rdd.map(lambda x: "\t".join(x))
rdd_combined_duyuv3_1.saveAsTextFile(save_path)

16.将pyspark dataframe 保存为csv

python 复制代码
output_path = "afs://szth.afs.baidu.com:9902/user/fsi/tongweiwei/duyuv3_1_feature/data.csv"
final_df.write.csv(output_path, header=True, mode="overwrite")

实际场景1

对某列的值进行按照空格进行切割,然后在对切割后的数据判断冒号前面的字符串判断是否在某一个字符串中,如果在则去除掉

python 复制代码
from pyspark.sql.types import StringType
from pyspark.sql.functions import concat_ws, col, when, lit, udf

def filter_feature(feature_str, filter_list):
    parts = feature_str.split()
    filtered_parts = [part for part in parts if str(part.split(':')[0]) not in filter_list.split(',')]
    return ' '.join(filtered_parts)

filter_feature_udf = udf(filter_feature, StringType())

df = duyuv3_df.withColumn("featurev3", filter_feature_udf(col("featurev3"), lit(duyuv3_str)))

实际场景2

对某列的值,按照空格进行切割后,按照冒号前面的进行排序

python 复制代码
from pyspark.sql.types import StringType
from pyspark.sql.functions import concat_ws, col, when, lit, udf


def sort_by_number(value):
        # 将输入字符串按空格分割为列表
        value = value.strip().split(" ")

        value_list = []
        # 遍历列表中的每个元素,提取数字部分并排序
        for val in value:
            try:
                feat_num = int(val.split(":")[0])
                value_list.append(val)
            except:
                continue
        sorted_pairs = sorted(value_list, key=lambda x: int(x.split(":")[0]))

        return " ".join(sorted_pairs)


sort_by_number_udf = udf(sort_by_number, StringType())


feature_cgc = replace_df.withColumn("sorted_feat",sort_by_number_udf(replace_df["merged_feature"]))
相关推荐
艾思科蓝 AiScholar31 分钟前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink1 小时前
面试题库笔记
大数据·人工智能·机器学习
Yuleave1 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理
数字化综合解决方案提供商1 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
一只码代码的章鱼1 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
知识鱼丸2 小时前
machine learning knn算法之使用KNN对鸢尾花数据集进行分类
算法·机器学习·分类
周杰伦_Jay2 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
SpikeKing2 小时前
LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)
人工智能·llm·transformer·plm·scalinglaws
编码浪子2 小时前
Transformer的编码机制
人工智能·深度学习·transformer
IE062 小时前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习