线性代数|机器学习-P34神经网络和学习函数

文章目录

  • [1. 神经网络](#1. 神经网络)
  • [2. 损失函数](#2. 损失函数)
  • [3. 距离矩阵](#3. 距离矩阵)

1. 神经网络

构建一个神经网络步骤如下:

    1. 构建一个神经网络
    1. 构造一个学习函数 F ( x , v ) F(x,v) F(x,v),x代表权重 A k , b k A_k,b_k Ak,bk,v代表样本特征向量,ReLu激活函数
      v 1 = R e L u [ F ( A 1 , b 1 , v 0 ) ] → v 1 = R e L u [ A 1 v 0 + b 1 ] \begin{equation} v_1=\mathrm{ReLu}[F(A_1,b_1,v_0)]\to v_1=\mathrm{ReLu}[A_1v_0+b_1]\ \end{equation} v1=ReLu[F(A1,b1,v0)]→v1=ReLu[A1v0+b1]
    1. 不断循环迭代上诉公式,构建神经网络
      v k = R e L u [ A k v k − 1 + b k ] \begin{equation} v_{k}=\mathrm{ReLu}[A_{k}v_{k-1}+b_{k}]\ \end{equation} vk=ReLu[Akvk−1+bk]
  • 神经网络图如下:

2. 损失函数

神经网络损失函数如下:
L ( x ) = { 1 N ∑ i = 1 N [ F ( x , x i ) − t r u e i ] 2 } \begin{equation} L(x)=\{\frac{1}{N}\sum_{i=1}^N[F(x,x_i)-true_i]^2\} \end{equation} L(x)={N1i=1∑N[F(x,xi)−truei]2}

  • 常见的损失函数如下:
    -- 最小平方损失函数
    -- L1范数损失函数
    -- 交叉熵损失函数
    -- Hinge损失函数

3. 距离矩阵

假设我们有两个点 x i , x j x_i,x_j xi,xj,用D表示点之间的距离如下:
d i j = ∣ ∣ x i − x j ∣ ∣ 2 2 \begin{equation} d_{ij}=||x_i-x_j||_2^2 \end{equation} dij=∣∣xi−xj∣∣22

  • 距离向量化分解:
    d i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} d_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} dij=∣∣xi−xj∣∣2=(xi−xj)T(xi−xj)=xiTxi−xiTxj−xjTxi+xjTxj
相关推荐
铸剑师欧冶子12 分钟前
AI领域的黄埔军校:OpenAI是新一代的PayPal Mafia,门生故吏遍天下
人工智能·深度学习·机器学习·gpt-3·文心一言
前网易架构师-高司机20 分钟前
手机识别数据集,2628张原始图片,支持yolo,coco json,pasical voc xml等格式的标注
人工智能·手机·数据集
GitLqr23 分钟前
AI洞察 | 一周动态: Manus 裁员、Kimi K2 开源、混元 3D 创作、Qwen Chat 桌面客户端
人工智能·agent·ai编程
灰灰的C旅程40 分钟前
详细理解向量叉积
线性代数
CareyWYR41 分钟前
让 LLM 拥有“可治理的记忆”:MemOS:A Memory OS for AI System 论文解读
人工智能
SHIPKING3931 小时前
【云端深度学习训练与部署平台】AutoDL连接VSCode运行深度学习项目的全流程
人工智能·深度学习·autodl
JNU freshman1 小时前
计算机视觉 之 经典模型汇总
人工智能·计算机视觉
苏苏susuus1 小时前
NLP:RNN文本生成案例分享
人工智能·rnn·自然语言处理
ComputerInBook2 小时前
矩阵之方阵与行列式的关系
线性代数·矩阵·行列式·线性变换·方阵的行列式
东方佑2 小时前
仅27M参数!SamOutVX轻量级语言模型刷新认知,小身材也有大智慧
人工智能·语言模型·自然语言处理