线性代数|机器学习-P34神经网络和学习函数

文章目录

  • [1. 神经网络](#1. 神经网络)
  • [2. 损失函数](#2. 损失函数)
  • [3. 距离矩阵](#3. 距离矩阵)

1. 神经网络

构建一个神经网络步骤如下:

    1. 构建一个神经网络
    1. 构造一个学习函数 F ( x , v ) F(x,v) F(x,v),x代表权重 A k , b k A_k,b_k Ak,bk,v代表样本特征向量,ReLu激活函数
      v 1 = R e L u [ F ( A 1 , b 1 , v 0 ) ] → v 1 = R e L u [ A 1 v 0 + b 1 ] \begin{equation} v_1=\mathrm{ReLu}[F(A_1,b_1,v_0)]\to v_1=\mathrm{ReLu}[A_1v_0+b_1]\ \end{equation} v1=ReLu[F(A1,b1,v0)]→v1=ReLu[A1v0+b1]
    1. 不断循环迭代上诉公式,构建神经网络
      v k = R e L u [ A k v k − 1 + b k ] \begin{equation} v_{k}=\mathrm{ReLu}[A_{k}v_{k-1}+b_{k}]\ \end{equation} vk=ReLu[Akvk−1+bk]
  • 神经网络图如下:

2. 损失函数

神经网络损失函数如下:
L ( x ) = { 1 N ∑ i = 1 N [ F ( x , x i ) − t r u e i ] 2 } \begin{equation} L(x)=\{\frac{1}{N}\sum_{i=1}^N[F(x,x_i)-true_i]^2\} \end{equation} L(x)={N1i=1∑N[F(x,xi)−truei]2}

  • 常见的损失函数如下:
    -- 最小平方损失函数
    -- L1范数损失函数
    -- 交叉熵损失函数
    -- Hinge损失函数

3. 距离矩阵

假设我们有两个点 x i , x j x_i,x_j xi,xj,用D表示点之间的距离如下:
d i j = ∣ ∣ x i − x j ∣ ∣ 2 2 \begin{equation} d_{ij}=||x_i-x_j||_2^2 \end{equation} dij=∣∣xi−xj∣∣22

  • 距离向量化分解:
    d i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} d_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} dij=∣∣xi−xj∣∣2=(xi−xj)T(xi−xj)=xiTxi−xiTxj−xjTxi+xjTxj
相关推荐
3DVisionary6 分钟前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星8 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星8 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
呵呵哒( ̄▽ ̄)"8 分钟前
线性代数:同解(1)
python·线性代数·机器学习
SweetCode14 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
Xiaok101825 分钟前
解决 Hugging Face SentenceTransformer 下载失败的完整指南:ProxyError、SSLError与手动下载方案
开发语言·神经网络·php
程序员Linc27 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh35 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能38 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_797882091 小时前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序