线性代数|机器学习-P34神经网络和学习函数

文章目录

  • [1. 神经网络](#1. 神经网络)
  • [2. 损失函数](#2. 损失函数)
  • [3. 距离矩阵](#3. 距离矩阵)

1. 神经网络

构建一个神经网络步骤如下:

    1. 构建一个神经网络
    1. 构造一个学习函数 F ( x , v ) F(x,v) F(x,v),x代表权重 A k , b k A_k,b_k Ak,bk,v代表样本特征向量,ReLu激活函数
      v 1 = R e L u [ F ( A 1 , b 1 , v 0 ) ] → v 1 = R e L u [ A 1 v 0 + b 1 ] \begin{equation} v_1=\mathrm{ReLu}[F(A_1,b_1,v_0)]\to v_1=\mathrm{ReLu}[A_1v_0+b_1]\ \end{equation} v1=ReLu[F(A1,b1,v0)]→v1=ReLu[A1v0+b1]
    1. 不断循环迭代上诉公式,构建神经网络
      v k = R e L u [ A k v k − 1 + b k ] \begin{equation} v_{k}=\mathrm{ReLu}[A_{k}v_{k-1}+b_{k}]\ \end{equation} vk=ReLu[Akvk−1+bk]
  • 神经网络图如下:

2. 损失函数

神经网络损失函数如下:
L ( x ) = { 1 N ∑ i = 1 N [ F ( x , x i ) − t r u e i ] 2 } \begin{equation} L(x)=\{\frac{1}{N}\sum_{i=1}^N[F(x,x_i)-true_i]^2\} \end{equation} L(x)={N1i=1∑N[F(x,xi)−truei]2}

  • 常见的损失函数如下:
    -- 最小平方损失函数
    -- L1范数损失函数
    -- 交叉熵损失函数
    -- Hinge损失函数

3. 距离矩阵

假设我们有两个点 x i , x j x_i,x_j xi,xj,用D表示点之间的距离如下:
d i j = ∣ ∣ x i − x j ∣ ∣ 2 2 \begin{equation} d_{ij}=||x_i-x_j||_2^2 \end{equation} dij=∣∣xi−xj∣∣22

  • 距离向量化分解:
    d i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} d_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} dij=∣∣xi−xj∣∣2=(xi−xj)T(xi−xj)=xiTxi−xiTxj−xjTxi+xjTxj
相关推荐
聚客AI27 分钟前
ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
人工智能·机器学习·语言模型·自然语言处理·langchain·transformer·llama
小羊Linux客栈33 分钟前
自动化:批量文件重命名
运维·人工智能·python·自动化·游戏程序
Mr数据杨5 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339865 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
九州ip动态6 小时前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
phoenix@Capricornus6 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
zhz52146 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师6 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
田梓燊7 小时前
数学复习笔记 19
笔记·线性代数·机器学习
武科大许志伟7 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技