线性代数|机器学习-P34神经网络和学习函数

文章目录

  • [1. 神经网络](#1. 神经网络)
  • [2. 损失函数](#2. 损失函数)
  • [3. 距离矩阵](#3. 距离矩阵)

1. 神经网络

构建一个神经网络步骤如下:

    1. 构建一个神经网络
    1. 构造一个学习函数 F ( x , v ) F(x,v) F(x,v),x代表权重 A k , b k A_k,b_k Ak,bk,v代表样本特征向量,ReLu激活函数
      v 1 = R e L u [ F ( A 1 , b 1 , v 0 ) ] → v 1 = R e L u [ A 1 v 0 + b 1 ] \begin{equation} v_1=\mathrm{ReLu}[F(A_1,b_1,v_0)]\to v_1=\mathrm{ReLu}[A_1v_0+b_1]\ \end{equation} v1=ReLu[F(A1,b1,v0)]→v1=ReLu[A1v0+b1]
    1. 不断循环迭代上诉公式,构建神经网络
      v k = R e L u [ A k v k − 1 + b k ] \begin{equation} v_{k}=\mathrm{ReLu}[A_{k}v_{k-1}+b_{k}]\ \end{equation} vk=ReLu[Akvk−1+bk]
  • 神经网络图如下:

2. 损失函数

神经网络损失函数如下:
L ( x ) = { 1 N ∑ i = 1 N [ F ( x , x i ) − t r u e i ] 2 } \begin{equation} L(x)=\{\frac{1}{N}\sum_{i=1}^N[F(x,x_i)-true_i]^2\} \end{equation} L(x)={N1i=1∑N[F(x,xi)−truei]2}

  • 常见的损失函数如下:
    -- 最小平方损失函数
    -- L1范数损失函数
    -- 交叉熵损失函数
    -- Hinge损失函数

3. 距离矩阵

假设我们有两个点 x i , x j x_i,x_j xi,xj,用D表示点之间的距离如下:
d i j = ∣ ∣ x i − x j ∣ ∣ 2 2 \begin{equation} d_{ij}=||x_i-x_j||_2^2 \end{equation} dij=∣∣xi−xj∣∣22

  • 距离向量化分解:
    d i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} d_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} dij=∣∣xi−xj∣∣2=(xi−xj)T(xi−xj)=xiTxi−xiTxj−xjTxi+xjTxj
相关推荐
dagouaofei几秒前
AI生成个性化年终总结PPT
人工智能·python·powerpoint
机器之心10 分钟前
登顶SuperCLUE DeepSearch,openPangu-R-72B深度搜索能力跃升
人工智能·openai
DMD16811 分钟前
AI赋能旅游与酒店业:技术逻辑与开发实践解析
大数据·人工智能·信息可视化·重构·旅游·产业升级
TG:@yunlaoda360 云老大33 分钟前
谷歌云AI 时代的算力革命:CPU、GPU 到 TPU 的架构与定位解析
人工智能·架构·googlecloud
AKAMAI34 分钟前
加速采用安全的企业级 Kubernetes 环境
人工智能·云计算
Aspect of twilight1 小时前
深度学习各种优化器详解
人工智能·深度学习
徽4401 小时前
农田植被目标检测数据标注与模型训练总结2
人工智能·目标检测·目标跟踪
Elastic 中国社区官方博客1 小时前
Elasticsearch 中使用 NVIDIA cuVS 实现最高快 12 倍的向量索引速度:GPU 加速第 2 章
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库架构
jkyy20141 小时前
线上线下融合、跨场景协同—社区健康医疗小屋的智能升级
大数据·人工智能·物联网·健康医疗
苏州知芯传感2 小时前
当AI遇见MEMS:机器学习如何优化微振镜的控制与可靠性预测
人工智能·机器学习·3d·mems·微振镜