跟李沐学AI:门控循环单元GRU、

目录

简介

候选隐藏状态

隐状态


简介

GRU是一种在循环神经网络中使用的单元结构。它旨在解决传统RNN在网络处理长序列数据时遇到的梯度消失或梯度爆炸问题。

GRU通过引入门控机制来控制信息的流动,从而使得网络能够更好地学习长期依赖性。

门可以视为一个与隐状态相同长度的向量,分为重置门和更新门。 重置门允许我们控制"可能还想记住"的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。更新门是一个sigmoid激活函数输出的结果,其值范围在0到1之间。当更新门完全打开(接近1)时,意味着旧状态将完全保留;当它关闭(接近0)时,则意味着旧状态将被丢弃,新的候选状态将完全取代旧状态。

重置门计算公式为:

更新门计算公式为:

候选隐藏状态

候选隐状态(candidate hidden state)是指在某一时间步t计算出的一个潜在的新隐状态值,通常用表示。

候选隐状态计算公式为:

符号⊙是Hadamard积(按元素乘积)运算符。 在这里,我们使用tanh非线性激活函数来确保候选隐状态中的值保持在区间(−1,1)中。其中,重置门的作用是确定上一时刻的状态​中有多少信息需要传递到当前时刻的候选隐状态中。如果重置门关闭(即​接近于0),则上一时刻的信息对当前候选隐状态的影响很小;如果重置门开启(即​接近于1),则上一时刻的信息将完全参与当前候选隐状态的计算。

隐状态

结合更新们,可以确定新的隐状态决定了新的隐状态多大程度来自旧的隐状态和新的候选状态。每当更新门接近1时,模型就倾向只保留旧状态。 此时,来自的信息基本上被忽略, 从而有效地跳过了依赖链条中的时间步t。 相反,当接近0时, 新的隐状态就会接近候选隐状态

隐状态公式为:

相关推荐
nihaoakekeke5 分钟前
Fast Distributed Inference Serving for Large Language Models
人工智能·语言模型·自然语言处理
用户51914958484519 分钟前
掌控Apple Silicon MacBook电池健康的神器
人工智能·aigc
静Yu35 分钟前
基于CANN框架的算子开发:释放AI计算潜能的核心引擎
人工智能
嵌入式-老费38 分钟前
自己动手写深度学习框架(最终的ncnn部署和测试)
人工智能·深度学习
阿十六1 小时前
OUC AI Lab 第七章:ViT & Swin Transformer
人工智能·深度学习·transformer
Mintopia1 小时前
🌳 Claude `code/worktree` 命令最佳实践指南
人工智能·claude·trae
阿里云大数据AI技术1 小时前
阿里云 Elasticsearch 的 AI 革新:高性能、低成本、智能化的搜索新纪元
人工智能·elasticsearch·阿里云
paperxie_xiexuo1 小时前
如何用自然语言生成科研图表?深度体验PaperXie AI科研绘图模块在流程图、机制图与结构图场景下的实际应用效果
大数据·人工智能·流程图·大学生
Mintopia1 小时前
🌌 AIGC模型的冷启动问题:Web应用的初期技术支撑策略
人工智能·trae
2501_941805312 小时前
边缘计算:引领智能化未来的新技术
人工智能