跟李沐学AI:门控循环单元GRU、

目录

简介

候选隐藏状态

隐状态


简介

GRU是一种在循环神经网络中使用的单元结构。它旨在解决传统RNN在网络处理长序列数据时遇到的梯度消失或梯度爆炸问题。

GRU通过引入门控机制来控制信息的流动,从而使得网络能够更好地学习长期依赖性。

门可以视为一个与隐状态相同长度的向量,分为重置门和更新门。 重置门允许我们控制"可能还想记住"的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。更新门是一个sigmoid激活函数输出的结果,其值范围在0到1之间。当更新门完全打开(接近1)时,意味着旧状态将完全保留;当它关闭(接近0)时,则意味着旧状态将被丢弃,新的候选状态将完全取代旧状态。

重置门计算公式为:

更新门计算公式为:

候选隐藏状态

候选隐状态(candidate hidden state)是指在某一时间步t计算出的一个潜在的新隐状态值,通常用表示。

候选隐状态计算公式为:

符号⊙是Hadamard积(按元素乘积)运算符。 在这里,我们使用tanh非线性激活函数来确保候选隐状态中的值保持在区间(−1,1)中。其中,重置门的作用是确定上一时刻的状态​中有多少信息需要传递到当前时刻的候选隐状态中。如果重置门关闭(即​接近于0),则上一时刻的信息对当前候选隐状态的影响很小;如果重置门开启(即​接近于1),则上一时刻的信息将完全参与当前候选隐状态的计算。

隐状态

结合更新们,可以确定新的隐状态决定了新的隐状态多大程度来自旧的隐状态和新的候选状态。每当更新门接近1时,模型就倾向只保留旧状态。 此时,来自的信息基本上被忽略, 从而有效地跳过了依赖链条中的时间步t。 相反,当接近0时, 新的隐状态就会接近候选隐状态

隐状态公式为:

相关推荐
Kakaxiii15 分钟前
【2025.8 npj】图检索增强的大型语言模型用于面部表型相关的罕见遗传疾病
人工智能·语言模型·自然语言处理
程序员小嬛33 分钟前
(TETCI 2024) 从 U-Net 到 Transformer:即插即用注意力模块解析
人工智能·深度学习·机器学习·transformer
SEO_juper1 小时前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_802 小时前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
人工智能AI技术2 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
qq_527887873 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通3 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu3 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯3 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
小饼干超人3 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习