跟李沐学AI:门控循环单元GRU、

目录

简介

候选隐藏状态

隐状态


简介

GRU是一种在循环神经网络中使用的单元结构。它旨在解决传统RNN在网络处理长序列数据时遇到的梯度消失或梯度爆炸问题。

GRU通过引入门控机制来控制信息的流动,从而使得网络能够更好地学习长期依赖性。

门可以视为一个与隐状态相同长度的向量,分为重置门和更新门。 重置门允许我们控制"可能还想记住"的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。更新门是一个sigmoid激活函数输出的结果,其值范围在0到1之间。当更新门完全打开(接近1)时,意味着旧状态将完全保留;当它关闭(接近0)时,则意味着旧状态将被丢弃,新的候选状态将完全取代旧状态。

重置门计算公式为:

更新门计算公式为:

候选隐藏状态

候选隐状态(candidate hidden state)是指在某一时间步t计算出的一个潜在的新隐状态值,通常用表示。

候选隐状态计算公式为:

符号⊙是Hadamard积(按元素乘积)运算符。 在这里,我们使用tanh非线性激活函数来确保候选隐状态中的值保持在区间(−1,1)中。其中,重置门的作用是确定上一时刻的状态​中有多少信息需要传递到当前时刻的候选隐状态中。如果重置门关闭(即​接近于0),则上一时刻的信息对当前候选隐状态的影响很小;如果重置门开启(即​接近于1),则上一时刻的信息将完全参与当前候选隐状态的计算。

隐状态

结合更新们,可以确定新的隐状态决定了新的隐状态多大程度来自旧的隐状态和新的候选状态。每当更新门接近1时,模型就倾向只保留旧状态。 此时,来自的信息基本上被忽略, 从而有效地跳过了依赖链条中的时间步t。 相反,当接近0时, 新的隐状态就会接近候选隐状态

隐状态公式为:

相关推荐
格林威1 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖1 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站1 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI1 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技1 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U2 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙2 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人
THMAIL2 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%2 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_2 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习