非监督式机器学习:群集

聚类分析是一种非监督式机器学习形式,在此形式下,基于观察值的数据值或特征的相似性,将观察值分组到群集中。 这种就是非监督式机器学习,因为它不使用先前已知的标签值来训练模型。 在聚类分析模型中,标签是群集,仅根据该群集特征向群集分配观察结果。

示例 - 聚类分析

例如,假设一位植物学家观察花的样本,并记录每支花上的叶子和花瓣的数量:

数据集中没有已知的标签,只有两个特征。 目的不是识别花的不同类型(品种);而是根据叶子数和花瓣数将相似的花朵分组在一起。

叶子 (x1) 花瓣 (x2)

0 5

0 6

1 3

1 3

1 6

1 8

2 3

2 7

2 8

训练聚类分析模型

有多种算法可用于聚类分析。 最常使用的算法之一是 K-Means 聚类分析,其中包括以下步骤:

对特征值 (x) 进行向量化以定义 N 维坐标(其中 N 是特征数)。 在花的示例中,有两个特征:叶子数 (x1) 和花瓣数 (x2)。 因此,特征向量具有两个坐标,可用于在二维空间中以概念形式绘制数据点 ([x1,x2])

决定要使用多少个群集来给花分组,并将此值称为 k。 例如,若要创建三个群集,则 k 值为 3。 然后,在随机坐标中绘制 k 点。 这些点将成为每个群集的中心点,因此它们被称为质心。

每个数据点(在本例中为一朵花)都被分配到最近的质心。

每个质心将根据分配给它的数据点之间的平均距离,移动到这些数据点的中心。

移动质心后,数据点现在可能更接近其他质心,因此数据点将根据新的最近的质心重新分配给群集。

质心移动和群集重新分配步骤会重复执行,直到群集变得稳定或达到预定的最大迭代次数为止。

下面的动画展示了此过程:

评估聚类分析模型

由于没有可用于比较预测群集分配的已知标签,因此聚类分析模型的评估基于生成的群集彼此的分离程度。

可以使用多个指标来评估群集分离情况,包括:

距群集中心的平均距离:群集中的每个点与群集的质心的平均接近程度。

距其他中心的平均距离:群集中的每个点与所有其他群集的质心的平均接近程度。

距聚类中心的最大距离:群集中的点与其质心之间的最远距离。

剪影:介于 -1 和 1 之间的值,用于汇总同一群集中的点与不同群集中的点之间的距离比率(越接近 1,群集分离效果越好)。

相关推荐
AI营销实验室4 分钟前
原圈科技如何以多智能体赋能AI营销内容生产新范式
人工智能
视***间7 分钟前
智驱万物,视联未来 —— 视程空间以 AI 硬科技赋能全场景智能革新
人工智能·边缘计算·视程空间·ai算力开发板
Dave.B14 分钟前
用【vtk3DLinearGridCrinkleExtractor】快速提取3D网格相交面
算法·3d·vtk
yaoh.wang21 分钟前
力扣(LeetCode) 1: 两数之和 - 解法思路
python·程序人生·算法·leetcode·面试·跳槽·哈希算法
一个java开发26 分钟前
mcp demo 智能天气服务:经纬度预报与城市警报
人工智能
阿里云大数据AI技术28 分钟前
OmniThoughtV:面向多模态深度思考的高质量数据蒸馏
人工智能
jkyy201432 分钟前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
Code Slacker37 分钟前
LeetCode Hot100 —— 滑动窗口(面试纯背版)(四)
数据结构·c++·算法·leetcode
hy156878639 分钟前
coze编程-工作流-起起起---废(一句话生成工作流)
人工智能·coze·自动编程
brave and determined42 分钟前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录