【视频教程】基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用"端对端"的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为"学习特征"),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。以TensorFlow为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,TensorFlow平台的掌握也并不容易。本课程采用线上辅导,上机实操教学方式,使广大学者能够掌握卷积神经网络背后的数学模型和计算机算法,熟练利用TensorFlow为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。

相关推荐
道199319 分钟前
PyTorch 从小白到高级进阶教程[工业级示例](三)
人工智能·pytorch·python
测试人社区-千羽31 分钟前
智能测试的终极形态:从自动化到自主化的范式变革
运维·人工智能·python·opencv·测试工具·自动化·开源软件
listhi52035 分钟前
使用Hopfield神经网络解决旅行商问题
人工智能·深度学习·神经网络
锐学AI37 分钟前
从零开始学MCP(八)- 构建一个MCP server
人工智能·python
木棉知行者37 分钟前
PyTorch 核心方法:state_dict ()、parameters () 参数打印与应用
人工智能·pytorch·python
xingzhemengyou138 分钟前
python time的使用
python
m0_5648768440 分钟前
卷积学习录
深度学习·学习·cnn
码界奇点42 分钟前
基于Python与GitHub Actions的正方教务成绩自动推送系统设计与实现
开发语言·python·车载系统·自动化·毕业设计·github·源代码管理
E_ICEBLUE1 小时前
PDF vs PDF/A:区别、场景与常用转换方法(2025 全面解读)
python·pdf
哥布林学者2 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识 课后习题和代码代码实践
深度学习·ai