【视频教程】基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用"端对端"的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为"学习特征"),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。以TensorFlow为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,TensorFlow平台的掌握也并不容易。本课程采用线上辅导,上机实操教学方式,使广大学者能够掌握卷积神经网络背后的数学模型和计算机算法,熟练利用TensorFlow为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。

相关推荐
面朝大海,春不暖,花不开1 小时前
Python 文件操作与输入输出:从基础到高级应用
windows·python·microsoft
AI视觉网奇1 小时前
pycharm F2 修改文件名 修改快捷键
ide·python·pycharm
酷爱码1 小时前
Java -jar命令运行外部依赖JAR包的深度场景分析与实践指南
java·python·jar
WilliamCHW1 小时前
Pycharm 配置解释器
ide·python·pycharm
红衣小蛇妖1 小时前
神经网络-Day46
人工智能·深度学习·神经网络
abments2 小时前
基于ReAction范式的问答系统实现demo
开发语言·python
带电的小王2 小时前
【动手学深度学习】3.1. 线性回归
人工智能·深度学习·线性回归
belong_to_you2 小时前
python模块——tqdm
python
L_cl3 小时前
【Python 算法零基础 4.排序 ⑪ 十大排序算法总结】
python·算法·排序算法
Vertira3 小时前
Pytorch安装后 如何快速查看经典的网络模型.py文件(例如Alexnet,VGG)(已解决)
人工智能·pytorch·python