roctracer 的应用示例

1,不用 roctracer 的普通场景

mt.cpp

复制代码
/* Copyright (c) 2018-2022 Advanced Micro Devices, Inc.

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE. */

#include <iostream>

// hip header file
#include <hip/hip_runtime.h>

#define HIP_CALL(call)                                                                             \
  do {                                                                                             \
    hipError_t err = call;                                                                         \
    if (err != hipSuccess) {                                                                       \
      fprintf(stderr, "%s\n", hipGetErrorString(err));                                             \
      abort();                                                                                     \
    }                                                                                              \
  } while (0)

#define WIDTH 1024


#define NUM (WIDTH * WIDTH)

#define THREADS_PER_BLOCK_X 4
#define THREADS_PER_BLOCK_Y 4
#define THREADS_PER_BLOCK_Z 1

// Device (Kernel) function, it must be void
__global__ void matrixTranspose(float* out, float* in, const int width) {
  int x = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  int y = hipBlockDim_y * hipBlockIdx_y + hipThreadIdx_y;

  out[y * width + x] = in[x * width + y];
}

// CPU implementation of matrix transpose
void matrixTransposeCPUReference(float* output, float* input, const unsigned int width) {
  for (unsigned int j = 0; j < width; j++) {
    for (unsigned int i = 0; i < width; i++) {
      output[i * width + j] = input[j * width + i];
    }
  }
}

int main() {
  float* Matrix;
  float* TransposeMatrix;
  float* cpuTransposeMatrix;

  float* gpuMatrix;
  float* gpuTransposeMatrix;

  hipDeviceProp_t devProp;
  HIP_CALL(hipGetDeviceProperties(&devProp, 0));

  std::cerr << "Device name " << devProp.name << std::endl;

  int i;
  int errors;

  Matrix = (float*)malloc(NUM * sizeof(float));
  TransposeMatrix = (float*)malloc(NUM * sizeof(float));
  cpuTransposeMatrix = (float*)malloc(NUM * sizeof(float));

  // initialize the input data
  for (i = 0; i < NUM; i++) {
    Matrix[i] = (float)i * 10.0f;
  }

  // allocate the memory on the device side
  HIP_CALL(hipMalloc((void**)&gpuMatrix, NUM * sizeof(float)));
  HIP_CALL(hipMalloc((void**)&gpuTransposeMatrix, NUM * sizeof(float)));

  uint32_t iterations = 100;
  while (iterations-- > 0) {
    std::cerr << "## Iteration (" << iterations << ") #################" << std::endl;

    // Memory transfer from host to device
    HIP_CALL(hipMemcpy(gpuMatrix, Matrix, NUM * sizeof(float), hipMemcpyHostToDevice));

    // Lauching kernel from host
    hipLaunchKernelGGL(
        matrixTranspose, dim3(WIDTH / THREADS_PER_BLOCK_X, WIDTH / THREADS_PER_BLOCK_Y),
        dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y), 0, 0, gpuTransposeMatrix, gpuMatrix, WIDTH);


    HIP_CALL(
        hipMemcpy(TransposeMatrix, gpuTransposeMatrix, NUM * sizeof(float), hipMemcpyDeviceToHost));


    // CPU MatrixTranspose computation
    matrixTransposeCPUReference(cpuTransposeMatrix, Matrix, WIDTH);

    // verify the results
    errors = 0;
    double eps = 1.0E-6;
    for (i = 0; i < NUM; i++) {
      if (std::abs(TransposeMatrix[i] - cpuTransposeMatrix[i]) > eps) {
        errors++;
      }
    }
    if (errors != 0) {
      fprintf(stderr, "FAILED: %d errors\n", errors);
    } else {
      fprintf(stderr, "PASSED!\n");
    }
  }

  // free the resources on device side
  HIP_CALL(hipFree(gpuMatrix));
  HIP_CALL(hipFree(gpuTransposeMatrix));

  // free the resources on host side
  free(Matrix);
  free(TransposeMatrix);
  free(cpuTransposeMatrix);

  return errors;
}

编译:

$ hipcc mt.cpp -o mt

$ ./mt xxx

不会产生文件;

2,加入roctracer的源文件

MatrixTranspose.cpp:

cpp 复制代码
/* Copyright (c) 2018-2022 Advanced Micro Devices, Inc.

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE. */

#include <iostream>

// hip header file
#include <hip/hip_runtime.h>
#include "roctracer_ext.h"
// roctx header file
#include <roctx.h>

#define HIP_CALL(call)                                                                             \
  do {                                                                                             \
    hipError_t err = call;                                                                         \
    if (err != hipSuccess) {                                                                       \
      fprintf(stderr, "%s\n", hipGetErrorString(err));                                             \
      abort();                                                                                     \
    }                                                                                              \
  } while (0)

#define WIDTH 1024


#define NUM (WIDTH * WIDTH)

#define THREADS_PER_BLOCK_X 4
#define THREADS_PER_BLOCK_Y 4
#define THREADS_PER_BLOCK_Z 1

// Device (Kernel) function, it must be void
__global__ void matrixTranspose(float* out, float* in, const int width) {
  int x = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  int y = hipBlockDim_y * hipBlockIdx_y + hipThreadIdx_y;

  out[y * width + x] = in[x * width + y];
}

// CPU implementation of matrix transpose
void matrixTransposeCPUReference(float* output, float* input, const unsigned int width) {
  for (unsigned int j = 0; j < width; j++) {
    for (unsigned int i = 0; i < width; i++) {
      output[i * width + j] = input[j * width + i];
    }
  }
}

int main() {
  float* Matrix;
  float* TransposeMatrix;
  float* cpuTransposeMatrix;

  float* gpuMatrix;
  float* gpuTransposeMatrix;

  hipDeviceProp_t devProp;
  HIP_CALL(hipGetDeviceProperties(&devProp, 0));

  std::cerr << "Device name " << devProp.name << std::endl;

  int i;
  int errors;

  Matrix = (float*)malloc(NUM * sizeof(float));
  TransposeMatrix = (float*)malloc(NUM * sizeof(float));
  cpuTransposeMatrix = (float*)malloc(NUM * sizeof(float));

  // initialize the input data
  for (i = 0; i < NUM; i++) {
    Matrix[i] = (float)i * 10.0f;
  }

  // allocate the memory on the device side
  HIP_CALL(hipMalloc((void**)&gpuMatrix, NUM * sizeof(float)));
  HIP_CALL(hipMalloc((void**)&gpuTransposeMatrix, NUM * sizeof(float)));

  uint32_t iterations = 100;
  while (iterations-- > 0) {
    std::cerr << "## Iteration (" << iterations << ") #################" << std::endl;

    // Memory transfer from host to device
    HIP_CALL(hipMemcpy(gpuMatrix, Matrix, NUM * sizeof(float), hipMemcpyHostToDevice));

    roctxMark("before hipLaunchKernel");
    int rangeId = roctxRangeStart("hipLaunchKernel range");
    roctxRangePush("hipLaunchKernel");
    // Lauching kernel from host
    hipLaunchKernelGGL(
        matrixTranspose, dim3(WIDTH / THREADS_PER_BLOCK_X, WIDTH / THREADS_PER_BLOCK_Y),
        dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y), 0, 0, gpuTransposeMatrix, gpuMatrix, WIDTH);
    roctxMark("after hipLaunchKernel");

    // Memory transfer from device to host
    roctxRangePush("hipMemcpy");

    HIP_CALL(
        hipMemcpy(TransposeMatrix, gpuTransposeMatrix, NUM * sizeof(float), hipMemcpyDeviceToHost));

    roctxRangePop();  // for "hipMemcpy"
    roctxRangePop();  // for "hipLaunchKernel"
    roctxRangeStop(rangeId);

    // CPU MatrixTranspose computation
    matrixTransposeCPUReference(cpuTransposeMatrix, Matrix, WIDTH);

    // verify the results
    errors = 0;
    double eps = 1.0E-6;
    for (i = 0; i < NUM; i++) {
      if (std::abs(TransposeMatrix[i] - cpuTransposeMatrix[i]) > eps) {
        errors++;
      }
    }
    if (errors != 0) {
      fprintf(stderr, "FAILED: %d errors\n", errors);
    } else {
      fprintf(stderr, "PASSED!\n");
    }
  }

  // free the resources on device side
  HIP_CALL(hipFree(gpuMatrix));
  HIP_CALL(hipFree(gpuTransposeMatrix));

  // free the resources on host side
  free(Matrix);
  free(TransposeMatrix);
  free(cpuTransposeMatrix);

  return errors;
}

编译:

只使用hipcc无法直接编译这个源文件

需要指定include 目录和链接库:

cpp 复制代码
$ hipcc ./MatrixTranspose.cpp  -I /opt/rocm/include/roctracer/ -lroctx64

运行:

./a.out

相关推荐
千金裘换酒4 小时前
LeetCode 移动零元素 快慢指针
算法·leetcode·职场和发展
wm10434 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
NAGNIP4 小时前
一文搞懂机器学习线性代数基础知识!
算法
NAGNIP4 小时前
机器学习入门概述一览
算法
byxdaz5 小时前
C++内存序
c++
iuu_star5 小时前
C语言数据结构-顺序查找、折半查找
c语言·数据结构·算法
优雅的潮叭5 小时前
c++ 学习笔记之 malloc
c++·笔记·学习
Yzzz-F5 小时前
P1558 色板游戏 [线段树 + 二进制状态压缩 + 懒标记区间重置]
算法
漫随流水5 小时前
leetcode算法(515.在每个树行中找最大值)
数据结构·算法·leetcode·二叉树
mit6.8246 小时前
dfs|前后缀分解
算法