经典sql题(三)查找股票价格波峰波谷

了解价格的波动情况对市场决策至关重要,本文通过 SQL 查询,演示如何从一个价格数据表中提取价格波动信息,识别出波峰和波谷。我们假设有一个名为 test 的表,包含每个时间点的价格数据。

示例数据

假设我们的 test 表有以下数据:

id ds price
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110
1 2023-10-02 10:00:00 105
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

查询步骤

第一步:计算前后价格

我们将使用窗口函数 LAGLEAD 来获取每个价格点的前后价格。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
    LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
FROM 
    test;

结果(中间表):

id ds price lag_price lead_price
1 2023-10-01 08:00:00 100 NULL 110
1 2023-10-01 09:00:00 110 100 105
1 2023-10-02 10:00:00 105 110 115
1 2023-10-03 11:00:00 115 105 NULL
2 2023-10-01 10:00:00 200 NULL 190
2 2023-10-02 12:00:00 190 200 195
2 2023-10-03 14:00:00 195 190 210
2 2023-10-04 15:00:00 210 195 NULL
3 2023-10-01 16:00:00 300 NULL NULL
第二步:识别波峰与波谷

在获取前后价格的基础上,我们接着使用 CASE 语句来标记波峰和波谷。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    CASE 
        WHEN price > lag_price AND price > lead_price THEN '波峰'
        WHEN price < lag_price AND price < lead_price THEN '波谷'
        ELSE '无'
    END AS price_type
FROM (
    SELECT 
        id,
        ds,
        price,
        LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
        LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
    FROM 
        test
) AS subquery;

结果(最终结果):

id ds price price_type
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110 波峰
1 2023-10-02 10:00:00 105 波谷
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190 波谷
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

完整步骤解析

  1. 计算前后价格

    • 使用 LAGLEAD 函数,基于每个 id 的时间顺序提取前后价格。
  2. 识别波峰与波谷

    • 使用 CASE 语句判断当前价格的波动状态,标记为"波峰"、"波谷"或"无"。
相关推荐
q***46433 分钟前
离线安装 Nginx
运维·数据库·nginx
我科绝伦(Huanhuan Zhou)41 分钟前
SQL进阶必备:从计算字段到多表联结,让查询效率翻倍!
数据库·sql
samLi06201 小时前
【实证分析】股票市场羊群效应、股市羊群效应CSSD和CSAD数据集(2000-2024年)
大数据
i***48612 小时前
Redis重大版本整理(Redis2.6-Redis7.0)
java·数据库·redis
r***86982 小时前
Redis 6.2.7安装配置
前端·数据库·redis
武子康2 小时前
大数据-157 Apache Kylin 全面指南:MOLAP 架构、Hive/Kafka 实战与实时 OLAP 落地
大数据·后端·apache kylin
海豚调度2 小时前
结项报告完整版 | 为 Apache DolphinScheduler 添加 gRPC 插件
大数据·任务调度·开源社区·大数据调度·apachedolphinscheduler
是Judy咋!2 小时前
Mongodb---副本集搭建(hashed分片)
数据库·mongodb·centos
q***14642 小时前
MySQL 批量插入详解:快速提升大数据导入效率的实战方法
大数据·数据库·mysql
Unstoppable222 小时前
八股训练营第 21 天 | Redis的数据类型有哪些?Redis是单线程的还是多线程的,为什么?说一说Redis持久化机制有哪些?
数据库·redis·缓存·八股