经典sql题(三)查找股票价格波峰波谷

了解价格的波动情况对市场决策至关重要,本文通过 SQL 查询,演示如何从一个价格数据表中提取价格波动信息,识别出波峰和波谷。我们假设有一个名为 test 的表,包含每个时间点的价格数据。

示例数据

假设我们的 test 表有以下数据:

id ds price
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110
1 2023-10-02 10:00:00 105
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

查询步骤

第一步:计算前后价格

我们将使用窗口函数 LAGLEAD 来获取每个价格点的前后价格。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
    LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
FROM 
    test;

结果(中间表):

id ds price lag_price lead_price
1 2023-10-01 08:00:00 100 NULL 110
1 2023-10-01 09:00:00 110 100 105
1 2023-10-02 10:00:00 105 110 115
1 2023-10-03 11:00:00 115 105 NULL
2 2023-10-01 10:00:00 200 NULL 190
2 2023-10-02 12:00:00 190 200 195
2 2023-10-03 14:00:00 195 190 210
2 2023-10-04 15:00:00 210 195 NULL
3 2023-10-01 16:00:00 300 NULL NULL
第二步:识别波峰与波谷

在获取前后价格的基础上,我们接着使用 CASE 语句来标记波峰和波谷。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    CASE 
        WHEN price > lag_price AND price > lead_price THEN '波峰'
        WHEN price < lag_price AND price < lead_price THEN '波谷'
        ELSE '无'
    END AS price_type
FROM (
    SELECT 
        id,
        ds,
        price,
        LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
        LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
    FROM 
        test
) AS subquery;

结果(最终结果):

id ds price price_type
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110 波峰
1 2023-10-02 10:00:00 105 波谷
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190 波谷
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

完整步骤解析

  1. 计算前后价格

    • 使用 LAGLEAD 函数,基于每个 id 的时间顺序提取前后价格。
  2. 识别波峰与波谷

    • 使用 CASE 语句判断当前价格的波动状态,标记为"波峰"、"波谷"或"无"。
相关推荐
武子康13 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术13 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
薛定谔的算法15 小时前
phoneGPT:构建专业领域的检索增强型智能问答系统
前端·数据库·后端
代码匠心16 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
Databend17 小时前
Databend 亮相 RustChinaConf 2025,分享基于 Rust 构建商业化数仓平台的探索
数据库
得物技术17 小时前
破解gh-ost变更导致MySQL表膨胀之谜|得物技术
数据库·后端·mysql
Lx35218 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康21 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g1 天前
Flink KeySelector
大数据·后端·flink
Raymond运维1 天前
MariaDB源码编译安装(二)
运维·数据库·mariadb