经典sql题(三)查找股票价格波峰波谷

了解价格的波动情况对市场决策至关重要,本文通过 SQL 查询,演示如何从一个价格数据表中提取价格波动信息,识别出波峰和波谷。我们假设有一个名为 test 的表,包含每个时间点的价格数据。

示例数据

假设我们的 test 表有以下数据:

id ds price
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110
1 2023-10-02 10:00:00 105
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

查询步骤

第一步:计算前后价格

我们将使用窗口函数 LAGLEAD 来获取每个价格点的前后价格。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
    LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
FROM 
    test;

结果(中间表):

id ds price lag_price lead_price
1 2023-10-01 08:00:00 100 NULL 110
1 2023-10-01 09:00:00 110 100 105
1 2023-10-02 10:00:00 105 110 115
1 2023-10-03 11:00:00 115 105 NULL
2 2023-10-01 10:00:00 200 NULL 190
2 2023-10-02 12:00:00 190 200 195
2 2023-10-03 14:00:00 195 190 210
2 2023-10-04 15:00:00 210 195 NULL
3 2023-10-01 16:00:00 300 NULL NULL
第二步:识别波峰与波谷

在获取前后价格的基础上,我们接着使用 CASE 语句来标记波峰和波谷。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    CASE 
        WHEN price > lag_price AND price > lead_price THEN '波峰'
        WHEN price < lag_price AND price < lead_price THEN '波谷'
        ELSE '无'
    END AS price_type
FROM (
    SELECT 
        id,
        ds,
        price,
        LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
        LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
    FROM 
        test
) AS subquery;

结果(最终结果):

id ds price price_type
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110 波峰
1 2023-10-02 10:00:00 105 波谷
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190 波谷
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

完整步骤解析

  1. 计算前后价格

    • 使用 LAGLEAD 函数,基于每个 id 的时间顺序提取前后价格。
  2. 识别波峰与波谷

    • 使用 CASE 语句判断当前价格的波动状态,标记为"波峰"、"波谷"或"无"。
相关推荐
手把手入门1 小时前
★CentOS:MySQL数据备份
数据库·mysql·adb
喂完待续1 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB2 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
路多辛2 小时前
Golang database/sql 包深度解析(二):连接池实现原理
数据库·sql·golang
SimonKing2 小时前
Mybatis批量插入,形式不同性能也不同
数据库·后端·程序员
最初的↘那颗心2 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
杰克尼3 小时前
MYSQL-175. 组合两个表
数据库·mysql
DemonAvenger3 小时前
MySQL索引原理深度解析与优化策略实战
数据库·mysql·性能优化
189228048614 小时前
NY270NY273美光固态闪存NY277NY287
服务器·网络·数据库·科技·性能优化
Yusei_05234 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch