经典sql题(三)查找股票价格波峰波谷

了解价格的波动情况对市场决策至关重要,本文通过 SQL 查询,演示如何从一个价格数据表中提取价格波动信息,识别出波峰和波谷。我们假设有一个名为 test 的表,包含每个时间点的价格数据。

示例数据

假设我们的 test 表有以下数据:

id ds price
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110
1 2023-10-02 10:00:00 105
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

查询步骤

第一步:计算前后价格

我们将使用窗口函数 LAGLEAD 来获取每个价格点的前后价格。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
    LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
FROM 
    test;

结果(中间表):

id ds price lag_price lead_price
1 2023-10-01 08:00:00 100 NULL 110
1 2023-10-01 09:00:00 110 100 105
1 2023-10-02 10:00:00 105 110 115
1 2023-10-03 11:00:00 115 105 NULL
2 2023-10-01 10:00:00 200 NULL 190
2 2023-10-02 12:00:00 190 200 195
2 2023-10-03 14:00:00 195 190 210
2 2023-10-04 15:00:00 210 195 NULL
3 2023-10-01 16:00:00 300 NULL NULL
第二步:识别波峰与波谷

在获取前后价格的基础上,我们接着使用 CASE 语句来标记波峰和波谷。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    CASE 
        WHEN price > lag_price AND price > lead_price THEN '波峰'
        WHEN price < lag_price AND price < lead_price THEN '波谷'
        ELSE '无'
    END AS price_type
FROM (
    SELECT 
        id,
        ds,
        price,
        LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
        LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
    FROM 
        test
) AS subquery;

结果(最终结果):

id ds price price_type
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110 波峰
1 2023-10-02 10:00:00 105 波谷
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190 波谷
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

完整步骤解析

  1. 计算前后价格

    • 使用 LAGLEAD 函数,基于每个 id 的时间顺序提取前后价格。
  2. 识别波峰与波谷

    • 使用 CASE 语句判断当前价格的波动状态,标记为"波峰"、"波谷"或"无"。
相关推荐
全栈前端老曹1 分钟前
【Redis】Redis 客户端连接与编程实践——Python/Java/Node.js 连接 Redis、实现计数器、缓存接口
前端·数据库·redis·python·缓存·全栈
霖霖总总2 分钟前
[小技巧72]AFTER COMMIT vs AFTER SYNC:MySQL 半同步复制的持久性博弈
数据库·mysql
未来之窗软件服务2 分钟前
平台对接(2)美团/抖音/饿了么/有赞/微信/京东券核销服务商模式—东方仙盟
大数据·运维·微信·平台对接·仙盟创梦ide·东方仙盟·东方仙盟sdk
麦聪聊数据3 分钟前
后端研发范式演进:从对象映射(ORM)到逻辑解耦(SQL2API)
数据库·sql·架构
2501_944934735 分钟前
大专信息统计与分析专业,怎么提升Excel高级函数的使用能力?
大数据·excel
爱敲代码的小鱼8 分钟前
后端web开发Mysql数据库:
数据库·mysql
Franciz小测测9 分钟前
GitLab 双物理机高可用新方案(基于 Rsyncd + Keepalived+PostgreSQL 流复制)
数据库·postgresql·gitlab
康康的AI博客9 分钟前
AI模型压缩与优化:如何通过蒸馏提升模型的运行效率
大数据·人工智能
野犬寒鸦11 分钟前
WebSocket协同编辑:高性能Disruptor架构揭秘及项目中的实战应用
java·开发语言·数据库·redis·后端
鸽芷咕12 分钟前
迁移即一致!金仓数据库内置数据校验能力如何支撑信创平滑替换?
数据库