经典sql题(三)查找股票价格波峰波谷

了解价格的波动情况对市场决策至关重要,本文通过 SQL 查询,演示如何从一个价格数据表中提取价格波动信息,识别出波峰和波谷。我们假设有一个名为 test 的表,包含每个时间点的价格数据。

示例数据

假设我们的 test 表有以下数据:

id ds price
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110
1 2023-10-02 10:00:00 105
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

查询步骤

第一步:计算前后价格

我们将使用窗口函数 LAGLEAD 来获取每个价格点的前后价格。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
    LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
FROM 
    test;

结果(中间表):

id ds price lag_price lead_price
1 2023-10-01 08:00:00 100 NULL 110
1 2023-10-01 09:00:00 110 100 105
1 2023-10-02 10:00:00 105 110 115
1 2023-10-03 11:00:00 115 105 NULL
2 2023-10-01 10:00:00 200 NULL 190
2 2023-10-02 12:00:00 190 200 195
2 2023-10-03 14:00:00 195 190 210
2 2023-10-04 15:00:00 210 195 NULL
3 2023-10-01 16:00:00 300 NULL NULL
第二步:识别波峰与波谷

在获取前后价格的基础上,我们接着使用 CASE 语句来标记波峰和波谷。

sql 复制代码
SELECT 
    id,
    ds,
    price,
    CASE 
        WHEN price > lag_price AND price > lead_price THEN '波峰'
        WHEN price < lag_price AND price < lead_price THEN '波谷'
        ELSE '无'
    END AS price_type
FROM (
    SELECT 
        id,
        ds,
        price,
        LAG(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lag_price,
        LEAD(price, 1) OVER (PARTITION BY id ORDER BY ds) AS lead_price
    FROM 
        test
) AS subquery;

结果(最终结果):

id ds price price_type
1 2023-10-01 08:00:00 100
1 2023-10-01 09:00:00 110 波峰
1 2023-10-02 10:00:00 105 波谷
1 2023-10-03 11:00:00 115
2 2023-10-01 10:00:00 200
2 2023-10-02 12:00:00 190 波谷
2 2023-10-03 14:00:00 195
2 2023-10-04 15:00:00 210
3 2023-10-01 16:00:00 300

完整步骤解析

  1. 计算前后价格

    • 使用 LAGLEAD 函数,基于每个 id 的时间顺序提取前后价格。
  2. 识别波峰与波谷

    • 使用 CASE 语句判断当前价格的波动状态,标记为"波峰"、"波谷"或"无"。
相关推荐
ljh5746491199 分钟前
mysql JSON_CONTAINS
数据库·mysql·json
CNRio41 分钟前
Day 48:Git的高级技巧:使用Git的worktree多工作区管理
大数据·git·elasticsearch
whltaoin1 小时前
【AI Agent Skills】重塑 AI Agent 竞争力:Skills 体系的核心价值、构建方法与未来方向
大数据·人工智能·agent·agent skills
Dxy12393102161 小时前
Python MySQL 错误回滚实战代码
数据库·python·mysql
Go高并发架构_王工1 小时前
Redis未来展望:Redis 7.0新特性与技术发展趋势
数据库·redis·缓存
一只大侠的侠1 小时前
数据工程新范式“从ETL到ELT的平滑迁移实战指南”
数据仓库·etl
产幻少年2 小时前
用户登录日志表和系统日志
运维·服务器·数据库
·云扬·2 小时前
InnoDB Cluster高可用测试实战:主从切换与故障恢复验证
数据库·mysql
Sui_Network2 小时前
Walrus 2025 年度回顾
大数据·前端·人工智能·深度学习·区块链
qq_455760852 小时前
redis - 持久化
数据库·redis·缓存